Solve for x
x=\frac{\left(-\sqrt{3y}+1\right)^{2}}{2}
y\geq \frac{1}{3}
Solve for y
y=\frac{\left(\sqrt{2x}+1\right)^{2}}{3}
x\geq 0
Solve for x (complex solution)
x=\frac{\left(-\sqrt{3y}+1\right)^{2}}{2}
y=\frac{1}{3}\text{ or }arg(-\sqrt{3y}+1)\geq \pi
Solve for y (complex solution)
y=\frac{\left(\sqrt{2x}+1\right)^{2}}{3}
arg(\sqrt{2x}+1)<\pi
Graph
Share
Copied to clipboard
\sqrt{2x}-\sqrt{3y}-\left(-\sqrt{3y}\right)=-1-\left(-\sqrt{3y}\right)
Subtract -\sqrt{3y} from both sides of the equation.
\sqrt{2x}=-1-\left(-\sqrt{3y}\right)
Subtracting -\sqrt{3y} from itself leaves 0.
\sqrt{2x}=\sqrt{3y}-1
Subtract -\sqrt{3y} from -1.
2x=\left(\sqrt{3y}-1\right)^{2}
Square both sides of the equation.
\frac{2x}{2}=\frac{\left(\sqrt{3y}-1\right)^{2}}{2}
Divide both sides by 2.
x=\frac{\left(\sqrt{3y}-1\right)^{2}}{2}
Dividing by 2 undoes the multiplication by 2.
-\sqrt{3y}+\sqrt{2x}-\sqrt{2x}=-1-\sqrt{2x}
Subtract \sqrt{2x} from both sides of the equation.
-\sqrt{3y}=-1-\sqrt{2x}
Subtracting \sqrt{2x} from itself leaves 0.
-\sqrt{3y}=-\sqrt{2x}-1
Subtract \sqrt{2x} from -1.
\frac{-\sqrt{3y}}{-1}=\frac{-\sqrt{2x}-1}{-1}
Divide both sides by -1.
\sqrt{3y}=\frac{-\sqrt{2x}-1}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{3y}=\sqrt{2x}+1
Divide -1-\sqrt{2x} by -1.
3y=\left(\sqrt{2x}+1\right)^{2}
Square both sides of the equation.
\frac{3y}{3}=\frac{\left(\sqrt{2x}+1\right)^{2}}{3}
Divide both sides by 3.
y=\frac{\left(\sqrt{2x}+1\right)^{2}}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}