Solve for v
v=-1
Share
Copied to clipboard
\left(\sqrt{2v+3}\right)^{2}=\left(v+2\right)^{2}
Square both sides of the equation.
2v+3=\left(v+2\right)^{2}
Calculate \sqrt{2v+3} to the power of 2 and get 2v+3.
2v+3=v^{2}+4v+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(v+2\right)^{2}.
2v+3-v^{2}=4v+4
Subtract v^{2} from both sides.
2v+3-v^{2}-4v=4
Subtract 4v from both sides.
-2v+3-v^{2}=4
Combine 2v and -4v to get -2v.
-2v+3-v^{2}-4=0
Subtract 4 from both sides.
-2v-1-v^{2}=0
Subtract 4 from 3 to get -1.
-v^{2}-2v-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-\left(-1\right)=1
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -v^{2}+av+bv-1. To find a and b, set up a system to be solved.
a=-1 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-v^{2}-v\right)+\left(-v-1\right)
Rewrite -v^{2}-2v-1 as \left(-v^{2}-v\right)+\left(-v-1\right).
v\left(-v-1\right)-v-1
Factor out v in -v^{2}-v.
\left(-v-1\right)\left(v+1\right)
Factor out common term -v-1 by using distributive property.
v=-1 v=-1
To find equation solutions, solve -v-1=0 and v+1=0.
\sqrt{2\left(-1\right)+3}=-1+2
Substitute -1 for v in the equation \sqrt{2v+3}=v+2.
1=1
Simplify. The value v=-1 satisfies the equation.
\sqrt{2\left(-1\right)+3}=-1+2
Substitute -1 for v in the equation \sqrt{2v+3}=v+2.
1=1
Simplify. The value v=-1 satisfies the equation.
v=-1 v=-1
List all solutions of \sqrt{2v+3}=v+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}