Evaluate
2\sqrt{3}-3\sqrt{2}-2\approx -2.778539072
Share
Copied to clipboard
3\sqrt{3}-\sqrt{2}\sqrt{6}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{3}-\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
3\sqrt{3}-2\sqrt{3}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{3}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Combine 3\sqrt{3} and -2\sqrt{3} to get \sqrt{3}.
\sqrt{3}-3\sqrt{2}-\frac{1}{2+\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\sqrt{3}-3\sqrt{2}-\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
\sqrt{3}-3\sqrt{2}-2-\left(-\sqrt{3}\right)
To find the opposite of 2-\sqrt{3}, find the opposite of each term.
\sqrt{3}-3\sqrt{2}-2+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
2\sqrt{3}-3\sqrt{2}-2
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}