Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{3}-\sqrt{2}\sqrt{6}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{3}-\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
3\sqrt{3}-2\sqrt{3}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{3}-\sqrt{18}-\frac{1}{2+\sqrt{3}}
Combine 3\sqrt{3} and -2\sqrt{3} to get \sqrt{3}.
\sqrt{3}-3\sqrt{2}-\frac{1}{2+\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\sqrt{3}-3\sqrt{2}-\frac{2-\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\sqrt{3}-3\sqrt{2}-\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
\sqrt{3}-3\sqrt{2}-2-\left(-\sqrt{3}\right)
To find the opposite of 2-\sqrt{3}, find the opposite of each term.
\sqrt{3}-3\sqrt{2}-2+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
2\sqrt{3}-3\sqrt{2}-2
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.