Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{20\times \frac{1}{1000000}\times 0.02\times 3+400\times 10^{-12}\times 10000}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\sqrt{\frac{1}{50000}\times 0.02\times 3+400\times 10^{-12}\times 10000}
Multiply 20 and \frac{1}{1000000} to get \frac{1}{50000}.
\sqrt{\frac{1}{2500000}\times 3+400\times 10^{-12}\times 10000}
Multiply \frac{1}{50000} and 0.02 to get \frac{1}{2500000}.
\sqrt{\frac{3}{2500000}+400\times 10^{-12}\times 10000}
Multiply \frac{1}{2500000} and 3 to get \frac{3}{2500000}.
\sqrt{\frac{3}{2500000}+400\times \frac{1}{1000000000000}\times 10000}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
\sqrt{\frac{3}{2500000}+\frac{1}{2500000000}\times 10000}
Multiply 400 and \frac{1}{1000000000000} to get \frac{1}{2500000000}.
\sqrt{\frac{3}{2500000}+\frac{1}{250000}}
Multiply \frac{1}{2500000000} and 10000 to get \frac{1}{250000}.
\sqrt{\frac{13}{2500000}}
Add \frac{3}{2500000} and \frac{1}{250000} to get \frac{13}{2500000}.
\frac{\sqrt{13}}{\sqrt{2500000}}
Rewrite the square root of the division \sqrt{\frac{13}{2500000}} as the division of square roots \frac{\sqrt{13}}{\sqrt{2500000}}.
\frac{\sqrt{13}}{500\sqrt{10}}
Factor 2500000=500^{2}\times 10. Rewrite the square root of the product \sqrt{500^{2}\times 10} as the product of square roots \sqrt{500^{2}}\sqrt{10}. Take the square root of 500^{2}.
\frac{\sqrt{13}\sqrt{10}}{500\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{13}}{500\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{13}\sqrt{10}}{500\times 10}
The square of \sqrt{10} is 10.
\frac{\sqrt{130}}{500\times 10}
To multiply \sqrt{13} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{130}}{5000}
Multiply 500 and 10 to get 5000.