Solve for x
x=2
Graph
Share
Copied to clipboard
\left(\sqrt{2-x}\right)^{2}=\left(\frac{x-2}{2}\right)^{2}
Square both sides of the equation.
2-x=\left(\frac{x-2}{2}\right)^{2}
Calculate \sqrt{2-x} to the power of 2 and get 2-x.
2-x=\frac{\left(x-2\right)^{2}}{2^{2}}
To raise \frac{x-2}{2} to a power, raise both numerator and denominator to the power and then divide.
2-x=\frac{x^{2}-4x+4}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2-x=\frac{x^{2}-4x+4}{4}
Calculate 2 to the power of 2 and get 4.
2-x=\frac{1}{4}x^{2}-x+1
Divide each term of x^{2}-4x+4 by 4 to get \frac{1}{4}x^{2}-x+1.
2-x-\frac{1}{4}x^{2}=-x+1
Subtract \frac{1}{4}x^{2} from both sides.
2-x-\frac{1}{4}x^{2}+x=1
Add x to both sides.
2-\frac{1}{4}x^{2}=1
Combine -x and x to get 0.
-\frac{1}{4}x^{2}=1-2
Subtract 2 from both sides.
-\frac{1}{4}x^{2}=-1
Subtract 2 from 1 to get -1.
x^{2}=-\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x^{2}=4
Multiply -1 and -4 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
\sqrt{2-2}=\frac{2-2}{2}
Substitute 2 for x in the equation \sqrt{2-x}=\frac{x-2}{2}.
0=0
Simplify. The value x=2 satisfies the equation.
\sqrt{2-\left(-2\right)}=\frac{-2-2}{2}
Substitute -2 for x in the equation \sqrt{2-x}=\frac{x-2}{2}.
2=-2
Simplify. The value x=-2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=2
Equation \sqrt{2-x}=\frac{x-2}{2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}