Solve for x
x=4
Graph
Share
Copied to clipboard
\sqrt{2x^{2}-2x+1}=-\left(-2x+3\right)
Subtract -2x+3 from both sides of the equation.
\sqrt{2x^{2}-2x+1}=2x-3
To find the opposite of -2x+3, find the opposite of each term.
\left(\sqrt{2x^{2}-2x+1}\right)^{2}=\left(2x-3\right)^{2}
Square both sides of the equation.
2x^{2}-2x+1=\left(2x-3\right)^{2}
Calculate \sqrt{2x^{2}-2x+1} to the power of 2 and get 2x^{2}-2x+1.
2x^{2}-2x+1=4x^{2}-12x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
2x^{2}-2x+1-4x^{2}=-12x+9
Subtract 4x^{2} from both sides.
-2x^{2}-2x+1=-12x+9
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-2x+1+12x=9
Add 12x to both sides.
-2x^{2}+10x+1=9
Combine -2x and 12x to get 10x.
-2x^{2}+10x+1-9=0
Subtract 9 from both sides.
-2x^{2}+10x-8=0
Subtract 9 from 1 to get -8.
-x^{2}+5x-4=0
Divide both sides by 2.
a+b=5 ab=-\left(-4\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=4 b=1
The solution is the pair that gives sum 5.
\left(-x^{2}+4x\right)+\left(x-4\right)
Rewrite -x^{2}+5x-4 as \left(-x^{2}+4x\right)+\left(x-4\right).
-x\left(x-4\right)+x-4
Factor out -x in -x^{2}+4x.
\left(x-4\right)\left(-x+1\right)
Factor out common term x-4 by using distributive property.
x=4 x=1
To find equation solutions, solve x-4=0 and -x+1=0.
\sqrt{2\times 4^{2}-2\times 4+1}-2\times 4+3=0
Substitute 4 for x in the equation \sqrt{2x^{2}-2x+1}-2x+3=0.
0=0
Simplify. The value x=4 satisfies the equation.
\sqrt{2\times 1^{2}-2+1}-2+3=0
Substitute 1 for x in the equation \sqrt{2x^{2}-2x+1}-2x+3=0.
2=0
Simplify. The value x=1 does not satisfy the equation.
x=4
Equation \sqrt{2x^{2}-2x+1}=2x-3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}