Evaluate
\frac{14\sqrt{10}}{5}\approx 8.854377448
Share
Copied to clipboard
\sqrt{196\times 40\times 10^{-2}}
Multiply 2 and 98 to get 196.
\sqrt{7840\times 10^{-2}}
Multiply 196 and 40 to get 7840.
\sqrt{7840\times \frac{1}{100}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\sqrt{\frac{392}{5}}
Multiply 7840 and \frac{1}{100} to get \frac{392}{5}.
\frac{\sqrt{392}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{392}{5}} as the division of square roots \frac{\sqrt{392}}{\sqrt{5}}.
\frac{14\sqrt{2}}{\sqrt{5}}
Factor 392=14^{2}\times 2. Rewrite the square root of the product \sqrt{14^{2}\times 2} as the product of square roots \sqrt{14^{2}}\sqrt{2}. Take the square root of 14^{2}.
\frac{14\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{14\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{14\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{14\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}