Evaluate
\frac{50\sqrt{10833}}{157}\approx 33.147037796
Share
Copied to clipboard
\sqrt{\frac{3450}{3.14}}
Multiply 2 and 1725 to get 3450.
\sqrt{\frac{345000}{314}}
Expand \frac{3450}{3.14} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{172500}{157}}
Reduce the fraction \frac{345000}{314} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{172500}}{\sqrt{157}}
Rewrite the square root of the division \sqrt{\frac{172500}{157}} as the division of square roots \frac{\sqrt{172500}}{\sqrt{157}}.
\frac{50\sqrt{69}}{\sqrt{157}}
Factor 172500=50^{2}\times 69. Rewrite the square root of the product \sqrt{50^{2}\times 69} as the product of square roots \sqrt{50^{2}}\sqrt{69}. Take the square root of 50^{2}.
\frac{50\sqrt{69}\sqrt{157}}{\left(\sqrt{157}\right)^{2}}
Rationalize the denominator of \frac{50\sqrt{69}}{\sqrt{157}} by multiplying numerator and denominator by \sqrt{157}.
\frac{50\sqrt{69}\sqrt{157}}{157}
The square of \sqrt{157} is 157.
\frac{50\sqrt{10833}}{157}
To multiply \sqrt{69} and \sqrt{157}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}