Evaluate
\frac{\sqrt{12558}}{28}+3136\approx 3140.00223152
Share
Copied to clipboard
\sqrt{\frac{112+785}{56}}+56^{2}
Multiply 2 and 56 to get 112.
\sqrt{\frac{897}{56}}+56^{2}
Add 112 and 785 to get 897.
\frac{\sqrt{897}}{\sqrt{56}}+56^{2}
Rewrite the square root of the division \sqrt{\frac{897}{56}} as the division of square roots \frac{\sqrt{897}}{\sqrt{56}}.
\frac{\sqrt{897}}{2\sqrt{14}}+56^{2}
Factor 56=2^{2}\times 14. Rewrite the square root of the product \sqrt{2^{2}\times 14} as the product of square roots \sqrt{2^{2}}\sqrt{14}. Take the square root of 2^{2}.
\frac{\sqrt{897}\sqrt{14}}{2\left(\sqrt{14}\right)^{2}}+56^{2}
Rationalize the denominator of \frac{\sqrt{897}}{2\sqrt{14}} by multiplying numerator and denominator by \sqrt{14}.
\frac{\sqrt{897}\sqrt{14}}{2\times 14}+56^{2}
The square of \sqrt{14} is 14.
\frac{\sqrt{12558}}{2\times 14}+56^{2}
To multiply \sqrt{897} and \sqrt{14}, multiply the numbers under the square root.
\frac{\sqrt{12558}}{28}+56^{2}
Multiply 2 and 14 to get 28.
\frac{\sqrt{12558}}{28}+3136
Calculate 56 to the power of 2 and get 3136.
\frac{\sqrt{12558}}{28}+\frac{3136\times 28}{28}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3136 times \frac{28}{28}.
\frac{\sqrt{12558}+3136\times 28}{28}
Since \frac{\sqrt{12558}}{28} and \frac{3136\times 28}{28} have the same denominator, add them by adding their numerators.
\frac{\sqrt{12558}+87808}{28}
Do the multiplications in \sqrt{12558}+3136\times 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}