Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{8+1}{4}\times \left(\frac{1\times 3+1}{3}\right)^{2}+\frac{1}{\sqrt[3]{\frac{3\times 8+3}{8}}}}
Multiply 2 and 4 to get 8.
\sqrt{\frac{9}{4}\times \left(\frac{1\times 3+1}{3}\right)^{2}+\frac{1}{\sqrt[3]{\frac{3\times 8+3}{8}}}}
Add 8 and 1 to get 9.
\sqrt{\frac{9}{4}\times \left(\frac{3+1}{3}\right)^{2}+\frac{1}{\sqrt[3]{\frac{3\times 8+3}{8}}}}
Multiply 1 and 3 to get 3.
\sqrt{\frac{9}{4}\times \left(\frac{4}{3}\right)^{2}+\frac{1}{\sqrt[3]{\frac{3\times 8+3}{8}}}}
Add 3 and 1 to get 4.
\sqrt{\frac{9}{4}\times \frac{16}{9}+\frac{1}{\sqrt[3]{\frac{3\times 8+3}{8}}}}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\sqrt{4+\frac{1}{\sqrt[3]{\frac{3\times 8+3}{8}}}}
Multiply \frac{9}{4} and \frac{16}{9} to get 4.
\sqrt{4+\frac{1}{\sqrt[3]{\frac{24+3}{8}}}}
Multiply 3 and 8 to get 24.
\sqrt{4+\frac{1}{\sqrt[3]{\frac{27}{8}}}}
Add 24 and 3 to get 27.
\sqrt{4+\frac{1}{\frac{3}{2}}}
Calculate \sqrt[3]{\frac{27}{8}} and get \frac{3}{2}.
\sqrt{4+1\times \frac{2}{3}}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\sqrt{4+\frac{2}{3}}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\sqrt{\frac{14}{3}}
Add 4 and \frac{2}{3} to get \frac{14}{3}.
\frac{\sqrt{14}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{14}{3}} as the division of square roots \frac{\sqrt{14}}{\sqrt{3}}.
\frac{\sqrt{14}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{14}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{14}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{42}}{3}
To multiply \sqrt{14} and \sqrt{3}, multiply the numbers under the square root.