Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{2}-\sqrt{2}\sqrt{3}+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)
Use the distributive property to multiply \sqrt{2} by 1-\sqrt{3}.
\sqrt{2}-\sqrt{6}+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{2}-\sqrt{6}+\left(\sqrt{2}\right)^{2}-1^{2}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{2}-\sqrt{6}+2-1^{2}
The square of \sqrt{2} is 2.
\sqrt{2}-\sqrt{6}+2-1
Calculate 1 to the power of 2 and get 1.
\sqrt{2}-\sqrt{6}+1
Subtract 1 from 2 to get 1.