Evaluate
\frac{24179\sqrt{2}}{24334}+\frac{12090}{12167}\approx 2.398876869
Share
Copied to clipboard
\sqrt{2}+1-\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-156\right)}{\left(\sqrt{2}+156\right)\left(\sqrt{2}-156\right)}
Rationalize the denominator of \frac{1+\sqrt{2}}{\sqrt{2}+156} by multiplying numerator and denominator by \sqrt{2}-156.
\sqrt{2}+1-\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-156\right)}{\left(\sqrt{2}\right)^{2}-156^{2}}
Consider \left(\sqrt{2}+156\right)\left(\sqrt{2}-156\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{2}+1-\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-156\right)}{2-24336}
Square \sqrt{2}. Square 156.
\sqrt{2}+1-\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-156\right)}{-24334}
Subtract 24336 from 2 to get -24334.
\sqrt{2}+1-\frac{\sqrt{2}-156+\left(\sqrt{2}\right)^{2}-156\sqrt{2}}{-24334}
Apply the distributive property by multiplying each term of 1+\sqrt{2} by each term of \sqrt{2}-156.
\sqrt{2}+1-\frac{\sqrt{2}-156+2-156\sqrt{2}}{-24334}
The square of \sqrt{2} is 2.
\sqrt{2}+1-\frac{\sqrt{2}-154-156\sqrt{2}}{-24334}
Add -156 and 2 to get -154.
\sqrt{2}+1-\frac{-155\sqrt{2}-154}{-24334}
Combine \sqrt{2} and -156\sqrt{2} to get -155\sqrt{2}.
\sqrt{2}+1-\frac{155\sqrt{2}+154}{24334}
Multiply both numerator and denominator by -1.
\frac{24334\left(\sqrt{2}+1\right)}{24334}-\frac{155\sqrt{2}+154}{24334}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2}+1 times \frac{24334}{24334}.
\frac{24334\left(\sqrt{2}+1\right)-\left(155\sqrt{2}+154\right)}{24334}
Since \frac{24334\left(\sqrt{2}+1\right)}{24334} and \frac{155\sqrt{2}+154}{24334} have the same denominator, subtract them by subtracting their numerators.
\frac{24334\sqrt{2}+24334-155\sqrt{2}-154}{24334}
Do the multiplications in 24334\left(\sqrt{2}+1\right)-\left(155\sqrt{2}+154\right).
\frac{24179\sqrt{2}+24180}{24334}
Do the calculations in 24334\sqrt{2}+24334-155\sqrt{2}-154.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}