Evaluate
\sqrt{2}\left(x^{2}-4x+16\right)
Factor
\sqrt{2}\left(x^{2}-4x+16\right)
Graph
Share
Copied to clipboard
\sqrt{2}\left(4-4x+x^{2}\right)+12\sqrt{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4\sqrt{2}-4\sqrt{2}x+\sqrt{2}x^{2}+12\sqrt{2}
Use the distributive property to multiply \sqrt{2} by 4-4x+x^{2}.
16\sqrt{2}-4\sqrt{2}x+\sqrt{2}x^{2}
Combine 4\sqrt{2} and 12\sqrt{2} to get 16\sqrt{2}.
\sqrt{2}\left(\left(2-x\right)^{2}+12\right)
Factor out common term \sqrt{2} by using distributive property.
x^{2}-4x+16
Consider \left(2-x\right)^{2}+12. Simplify.
\sqrt{2}\left(x^{2}-4x+16\right)
Rewrite the complete factored expression. Polynomial x^{2}-4x+16 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}