Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{2}+4\sqrt{\frac{1}{2}}-\sqrt{48}+\sqrt{\frac{1}{27}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}+4\times \frac{\sqrt{1}}{\sqrt{2}}-\sqrt{48}+\sqrt{\frac{1}{27}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
3\sqrt{2}+4\times \frac{1}{\sqrt{2}}-\sqrt{48}+\sqrt{\frac{1}{27}}
Calculate the square root of 1 and get 1.
3\sqrt{2}+4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\sqrt{48}+\sqrt{\frac{1}{27}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{2}+4\times \frac{\sqrt{2}}{2}-\sqrt{48}+\sqrt{\frac{1}{27}}
The square of \sqrt{2} is 2.
3\sqrt{2}+2\sqrt{2}-\sqrt{48}+\sqrt{\frac{1}{27}}
Cancel out 2, the greatest common factor in 4 and 2.
5\sqrt{2}-\sqrt{48}+\sqrt{\frac{1}{27}}
Combine 3\sqrt{2} and 2\sqrt{2} to get 5\sqrt{2}.
5\sqrt{2}-4\sqrt{3}+\sqrt{\frac{1}{27}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
5\sqrt{2}-4\sqrt{3}+\frac{\sqrt{1}}{\sqrt{27}}
Rewrite the square root of the division \sqrt{\frac{1}{27}} as the division of square roots \frac{\sqrt{1}}{\sqrt{27}}.
5\sqrt{2}-4\sqrt{3}+\frac{1}{\sqrt{27}}
Calculate the square root of 1 and get 1.
5\sqrt{2}-4\sqrt{3}+\frac{1}{3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
5\sqrt{2}-4\sqrt{3}+\frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
5\sqrt{2}-4\sqrt{3}+\frac{\sqrt{3}}{3\times 3}
The square of \sqrt{3} is 3.
5\sqrt{2}-4\sqrt{3}+\frac{\sqrt{3}}{9}
Multiply 3 and 3 to get 9.
5\sqrt{2}-\frac{35}{9}\sqrt{3}
Combine -4\sqrt{3} and \frac{\sqrt{3}}{9} to get -\frac{35}{9}\sqrt{3}.