Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{2}+\left(\sqrt{2}-1\right)^{2}+\sqrt{5}\sqrt{10}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1+\sqrt{5}\sqrt{10}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
3\sqrt{2}+2-2\sqrt{2}+1+\sqrt{5}\sqrt{10}
The square of \sqrt{2} is 2.
3\sqrt{2}+3-2\sqrt{2}+\sqrt{5}\sqrt{10}
Add 2 and 1 to get 3.
\sqrt{2}+3+\sqrt{5}\sqrt{10}
Combine 3\sqrt{2} and -2\sqrt{2} to get \sqrt{2}.
\sqrt{2}+3+\sqrt{5}\sqrt{5}\sqrt{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\sqrt{2}+3+5\sqrt{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
6\sqrt{2}+3
Combine \sqrt{2} and 5\sqrt{2} to get 6\sqrt{2}.