Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{16-x^{2}+32+\left(\frac{9}{5}\right)^{2}}\right)^{2}=x^{2}
Square both sides of the equation.
\left(\sqrt{48-x^{2}+\left(\frac{9}{5}\right)^{2}}\right)^{2}=x^{2}
Add 16 and 32 to get 48.
\left(\sqrt{48-x^{2}+\frac{81}{25}}\right)^{2}=x^{2}
Calculate \frac{9}{5} to the power of 2 and get \frac{81}{25}.
\left(\sqrt{\frac{1281}{25}-x^{2}}\right)^{2}=x^{2}
Add 48 and \frac{81}{25} to get \frac{1281}{25}.
\frac{1281}{25}-x^{2}=x^{2}
Calculate \sqrt{\frac{1281}{25}-x^{2}} to the power of 2 and get \frac{1281}{25}-x^{2}.
\frac{1281}{25}-x^{2}-x^{2}=0
Subtract x^{2} from both sides.
\frac{1281}{25}-2x^{2}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}=-\frac{1281}{25}
Subtract \frac{1281}{25} from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-\frac{1281}{25}}{-2}
Divide both sides by -2.
x^{2}=\frac{-1281}{25\left(-2\right)}
Express \frac{-\frac{1281}{25}}{-2} as a single fraction.
x^{2}=\frac{-1281}{-50}
Multiply 25 and -2 to get -50.
x^{2}=\frac{1281}{50}
Fraction \frac{-1281}{-50} can be simplified to \frac{1281}{50} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{2562}}{10} x=-\frac{\sqrt{2562}}{10}
Take the square root of both sides of the equation.
\sqrt{16-\left(\frac{\sqrt{2562}}{10}\right)^{2}+32+\left(\frac{9}{5}\right)^{2}}=\frac{\sqrt{2562}}{10}
Substitute \frac{\sqrt{2562}}{10} for x in the equation \sqrt{16-x^{2}+32+\left(\frac{9}{5}\right)^{2}}=x.
\frac{1}{10}\times 2562^{\frac{1}{2}}=\frac{1}{10}\times 2562^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{2562}}{10} satisfies the equation.
\sqrt{16-\left(-\frac{\sqrt{2562}}{10}\right)^{2}+32+\left(\frac{9}{5}\right)^{2}}=-\frac{\sqrt{2562}}{10}
Substitute -\frac{\sqrt{2562}}{10} for x in the equation \sqrt{16-x^{2}+32+\left(\frac{9}{5}\right)^{2}}=x.
\frac{1}{10}\times 2562^{\frac{1}{2}}=-\frac{1}{10}\times 2562^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{2562}}{10} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{2562}}{10}
Equation \sqrt{\frac{1281}{25}-x^{2}}=x has a unique solution.