Evaluate
\frac{2\sqrt{61}}{3}\approx 5.206833117
Share
Copied to clipboard
\sqrt{16-\frac{4}{9}\left(-25\right)}
Calculate 5 to the power of 2 and get 25.
\sqrt{16-\frac{4\left(-25\right)}{9}}
Express \frac{4}{9}\left(-25\right) as a single fraction.
\sqrt{16-\frac{-100}{9}}
Multiply 4 and -25 to get -100.
\sqrt{16-\left(-\frac{100}{9}\right)}
Fraction \frac{-100}{9} can be rewritten as -\frac{100}{9} by extracting the negative sign.
\sqrt{16+\frac{100}{9}}
The opposite of -\frac{100}{9} is \frac{100}{9}.
\sqrt{\frac{144}{9}+\frac{100}{9}}
Convert 16 to fraction \frac{144}{9}.
\sqrt{\frac{144+100}{9}}
Since \frac{144}{9} and \frac{100}{9} have the same denominator, add them by adding their numerators.
\sqrt{\frac{244}{9}}
Add 144 and 100 to get 244.
\frac{\sqrt{244}}{\sqrt{9}}
Rewrite the square root of the division \sqrt{\frac{244}{9}} as the division of square roots \frac{\sqrt{244}}{\sqrt{9}}.
\frac{2\sqrt{61}}{\sqrt{9}}
Factor 244=2^{2}\times 61. Rewrite the square root of the product \sqrt{2^{2}\times 61} as the product of square roots \sqrt{2^{2}}\sqrt{61}. Take the square root of 2^{2}.
\frac{2\sqrt{61}}{3}
Calculate the square root of 9 and get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}