Solve for x
x=6
Graph
Share
Copied to clipboard
\sqrt{15-x}=-3+\sqrt{6x}
Subtract -\sqrt{6x} from both sides of the equation.
\left(\sqrt{15-x}\right)^{2}=\left(-3+\sqrt{6x}\right)^{2}
Square both sides of the equation.
15-x=\left(-3+\sqrt{6x}\right)^{2}
Calculate \sqrt{15-x} to the power of 2 and get 15-x.
15-x=9-6\sqrt{6x}+\left(\sqrt{6x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+\sqrt{6x}\right)^{2}.
15-x=9-6\sqrt{6x}+6x
Calculate \sqrt{6x} to the power of 2 and get 6x.
15-x-\left(9+6x\right)=-6\sqrt{6x}
Subtract 9+6x from both sides of the equation.
15-x-9-6x=-6\sqrt{6x}
To find the opposite of 9+6x, find the opposite of each term.
6-x-6x=-6\sqrt{6x}
Subtract 9 from 15 to get 6.
6-7x=-6\sqrt{6x}
Combine -x and -6x to get -7x.
\left(6-7x\right)^{2}=\left(-6\sqrt{6x}\right)^{2}
Square both sides of the equation.
36-84x+49x^{2}=\left(-6\sqrt{6x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-7x\right)^{2}.
36-84x+49x^{2}=\left(-6\right)^{2}\left(\sqrt{6x}\right)^{2}
Expand \left(-6\sqrt{6x}\right)^{2}.
36-84x+49x^{2}=36\left(\sqrt{6x}\right)^{2}
Calculate -6 to the power of 2 and get 36.
36-84x+49x^{2}=36\times 6x
Calculate \sqrt{6x} to the power of 2 and get 6x.
36-84x+49x^{2}=216x
Multiply 36 and 6 to get 216.
36-84x+49x^{2}-216x=0
Subtract 216x from both sides.
36-300x+49x^{2}=0
Combine -84x and -216x to get -300x.
49x^{2}-300x+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 49\times 36}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -300 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-300\right)±\sqrt{90000-4\times 49\times 36}}{2\times 49}
Square -300.
x=\frac{-\left(-300\right)±\sqrt{90000-196\times 36}}{2\times 49}
Multiply -4 times 49.
x=\frac{-\left(-300\right)±\sqrt{90000-7056}}{2\times 49}
Multiply -196 times 36.
x=\frac{-\left(-300\right)±\sqrt{82944}}{2\times 49}
Add 90000 to -7056.
x=\frac{-\left(-300\right)±288}{2\times 49}
Take the square root of 82944.
x=\frac{300±288}{2\times 49}
The opposite of -300 is 300.
x=\frac{300±288}{98}
Multiply 2 times 49.
x=\frac{588}{98}
Now solve the equation x=\frac{300±288}{98} when ± is plus. Add 300 to 288.
x=6
Divide 588 by 98.
x=\frac{12}{98}
Now solve the equation x=\frac{300±288}{98} when ± is minus. Subtract 288 from 300.
x=\frac{6}{49}
Reduce the fraction \frac{12}{98} to lowest terms by extracting and canceling out 2.
x=6 x=\frac{6}{49}
The equation is now solved.
\sqrt{15-6}-\sqrt{6\times 6}=-3
Substitute 6 for x in the equation \sqrt{15-x}-\sqrt{6x}=-3.
-3=-3
Simplify. The value x=6 satisfies the equation.
\sqrt{15-\frac{6}{49}}-\sqrt{6\times \frac{6}{49}}=-3
Substitute \frac{6}{49} for x in the equation \sqrt{15-x}-\sqrt{6x}=-3.
3=-3
Simplify. The value x=\frac{6}{49} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{15-6}-\sqrt{6\times 6}=-3
Substitute 6 for x in the equation \sqrt{15-x}-\sqrt{6x}=-3.
-3=-3
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{15-x}=\sqrt{6x}-3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}