Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{15x^{2}}\right)^{2}=\left(\sqrt{4-\left(2-x\right)^{2}}\right)^{2}
Square both sides of the equation.
15x^{2}=\left(\sqrt{4-\left(2-x\right)^{2}}\right)^{2}
Calculate \sqrt{15x^{2}} to the power of 2 and get 15x^{2}.
15x^{2}=\left(\sqrt{4-\left(4-4x+x^{2}\right)}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
15x^{2}=\left(\sqrt{4-4+4x-x^{2}}\right)^{2}
To find the opposite of 4-4x+x^{2}, find the opposite of each term.
15x^{2}=\left(\sqrt{4x-x^{2}}\right)^{2}
Subtract 4 from 4 to get 0.
15x^{2}=4x-x^{2}
Calculate \sqrt{4x-x^{2}} to the power of 2 and get 4x-x^{2}.
15x^{2}-4x=-x^{2}
Subtract 4x from both sides.
15x^{2}-4x+x^{2}=0
Add x^{2} to both sides.
16x^{2}-4x=0
Combine 15x^{2} and x^{2} to get 16x^{2}.
x\left(16x-4\right)=0
Factor out x.
x=0 x=\frac{1}{4}
To find equation solutions, solve x=0 and 16x-4=0.
\sqrt{15\times 0^{2}}=\sqrt{4-\left(2-0\right)^{2}}
Substitute 0 for x in the equation \sqrt{15x^{2}}=\sqrt{4-\left(2-x\right)^{2}}.
0=0
Simplify. The value x=0 satisfies the equation.
\sqrt{15\times \left(\frac{1}{4}\right)^{2}}=\sqrt{4-\left(2-\frac{1}{4}\right)^{2}}
Substitute \frac{1}{4} for x in the equation \sqrt{15x^{2}}=\sqrt{4-\left(2-x\right)^{2}}.
\frac{1}{4}\times 15^{\frac{1}{2}}=\frac{1}{4}\times 15^{\frac{1}{2}}
Simplify. The value x=\frac{1}{4} satisfies the equation.
x=0 x=\frac{1}{4}
List all solutions of \sqrt{15x^{2}}=\sqrt{4-\left(2-x\right)^{2}}.