Evaluate
\frac{15\left(\sqrt{5}-\sqrt{3}\right)}{2}\approx 3.780128774
Share
Copied to clipboard
\frac{\sqrt{15}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{\sqrt{5}}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{15}}{\frac{\sqrt{3}}{3}+\frac{1}{\sqrt{5}}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{15}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}}{\frac{5\sqrt{3}}{15}+\frac{3\sqrt{5}}{15}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{\sqrt{3}}{3} times \frac{5}{5}. Multiply \frac{\sqrt{5}}{5} times \frac{3}{3}.
\frac{\sqrt{15}}{\frac{5\sqrt{3}+3\sqrt{5}}{15}}
Since \frac{5\sqrt{3}}{15} and \frac{3\sqrt{5}}{15} have the same denominator, add them by adding their numerators.
\frac{\sqrt{15}\times 15}{5\sqrt{3}+3\sqrt{5}}
Divide \sqrt{15} by \frac{5\sqrt{3}+3\sqrt{5}}{15} by multiplying \sqrt{15} by the reciprocal of \frac{5\sqrt{3}+3\sqrt{5}}{15}.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{\left(5\sqrt{3}+3\sqrt{5}\right)\left(5\sqrt{3}-3\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{15}\times 15}{5\sqrt{3}+3\sqrt{5}} by multiplying numerator and denominator by 5\sqrt{3}-3\sqrt{5}.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(5\sqrt{3}+3\sqrt{5}\right)\left(5\sqrt{3}-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{25\times 3-\left(3\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-\left(3\sqrt{5}\right)^{2}}
Multiply 25 and 3 to get 75.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-9\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{75-45}
Multiply 9 and 5 to get 45.
\frac{\sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right)}{30}
Subtract 45 from 75 to get 30.
\sqrt{15}\times \frac{1}{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Divide \sqrt{15}\times 15\left(5\sqrt{3}-3\sqrt{5}\right) by 30 to get \sqrt{15}\times \frac{1}{2}\left(5\sqrt{3}-3\sqrt{5}\right).
\sqrt{15}\times \frac{1}{2}\times 5\sqrt{3}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Use the distributive property to multiply \sqrt{15}\times \frac{1}{2} by 5\sqrt{3}-3\sqrt{5}.
\sqrt{3}\sqrt{5}\times \frac{1}{2}\times 5\sqrt{3}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
3\times \frac{1}{2}\times 5\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3}{2}\times 5\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3\times 5}{2}\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Express \frac{3}{2}\times 5 as a single fraction.
\frac{15}{2}\sqrt{5}+\sqrt{15}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Multiply 3 and 5 to get 15.
\frac{15}{2}\sqrt{5}+\sqrt{5}\sqrt{3}\times \frac{1}{2}\left(-3\right)\sqrt{5}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{15}{2}\sqrt{5}+5\times \frac{1}{2}\left(-3\right)\sqrt{3}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15}{2}\sqrt{5}+\frac{5}{2}\left(-3\right)\sqrt{3}
Multiply 5 and \frac{1}{2} to get \frac{5}{2}.
\frac{15}{2}\sqrt{5}+\frac{5\left(-3\right)}{2}\sqrt{3}
Express \frac{5}{2}\left(-3\right) as a single fraction.
\frac{15}{2}\sqrt{5}+\frac{-15}{2}\sqrt{3}
Multiply 5 and -3 to get -15.
\frac{15}{2}\sqrt{5}-\frac{15}{2}\sqrt{3}
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}