Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{14}+\frac{\sqrt{2}}{\sqrt{7}}+\sqrt{\frac{7}{2}}
Rewrite the square root of the division \sqrt{\frac{2}{7}} as the division of square roots \frac{\sqrt{2}}{\sqrt{7}}.
\sqrt{14}+\frac{\sqrt{2}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\sqrt{\frac{7}{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\sqrt{14}+\frac{\sqrt{2}\sqrt{7}}{7}+\sqrt{\frac{7}{2}}
The square of \sqrt{7} is 7.
\sqrt{14}+\frac{\sqrt{14}}{7}+\sqrt{\frac{7}{2}}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{8}{7}\sqrt{14}+\sqrt{\frac{7}{2}}
Combine \sqrt{14} and \frac{\sqrt{14}}{7} to get \frac{8}{7}\sqrt{14}.
\frac{8}{7}\sqrt{14}+\frac{\sqrt{7}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{7}{2}} as the division of square roots \frac{\sqrt{7}}{\sqrt{2}}.
\frac{8}{7}\sqrt{14}+\frac{\sqrt{7}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{8}{7}\sqrt{14}+\frac{\sqrt{7}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{8}{7}\sqrt{14}+\frac{\sqrt{14}}{2}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{23}{14}\sqrt{14}
Combine \frac{8}{7}\sqrt{14} and \frac{\sqrt{14}}{2} to get \frac{23}{14}\sqrt{14}.