Evaluate
\frac{3\sqrt{3}}{4}\approx 1.299038106
Share
Copied to clipboard
\frac{3\sqrt{15}}{\sqrt{80}}
Factor 135=3^{2}\times 15. Rewrite the square root of the product \sqrt{3^{2}\times 15} as the product of square roots \sqrt{3^{2}}\sqrt{15}. Take the square root of 3^{2}.
\frac{3\sqrt{15}}{4\sqrt{5}}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{3\sqrt{15}\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{15}}{4\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{15}\sqrt{5}}{4\times 5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}\sqrt{3}\sqrt{5}}{4\times 5}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{3\times 5\sqrt{3}}{4\times 5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{3\times 5\sqrt{3}}{20}
Multiply 4 and 5 to get 20.
\frac{15\sqrt{3}}{20}
Multiply 3 and 5 to get 15.
\frac{3}{4}\sqrt{3}
Divide 15\sqrt{3} by 20 to get \frac{3}{4}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}