Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

11+\sqrt{7}\left(2-\frac{1}{\sqrt{7}}\right)-\sqrt[3]{1000}
Calculate the square root of 121 and get 11.
11+\sqrt{7}\left(2-\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\right)-\sqrt[3]{1000}
Rationalize the denominator of \frac{1}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
11+\sqrt{7}\left(2-\frac{\sqrt{7}}{7}\right)-\sqrt[3]{1000}
The square of \sqrt{7} is 7.
11+\sqrt{7}\left(\frac{2\times 7}{7}-\frac{\sqrt{7}}{7}\right)-\sqrt[3]{1000}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{7}{7}.
11+\sqrt{7}\times \frac{2\times 7-\sqrt{7}}{7}-\sqrt[3]{1000}
Since \frac{2\times 7}{7} and \frac{\sqrt{7}}{7} have the same denominator, subtract them by subtracting their numerators.
11+\sqrt{7}\times \frac{14-\sqrt{7}}{7}-\sqrt[3]{1000}
Do the multiplications in 2\times 7-\sqrt{7}.
11+\frac{\sqrt{7}\left(14-\sqrt{7}\right)}{7}-\sqrt[3]{1000}
Express \sqrt{7}\times \frac{14-\sqrt{7}}{7} as a single fraction.
\frac{11\times 7}{7}+\frac{\sqrt{7}\left(14-\sqrt{7}\right)}{7}-\sqrt[3]{1000}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11 times \frac{7}{7}.
\frac{11\times 7+\sqrt{7}\left(14-\sqrt{7}\right)}{7}-\sqrt[3]{1000}
Since \frac{11\times 7}{7} and \frac{\sqrt{7}\left(14-\sqrt{7}\right)}{7} have the same denominator, add them by adding their numerators.
\frac{77+14\sqrt{7}-7}{7}-\sqrt[3]{1000}
Do the multiplications in 11\times 7+\sqrt{7}\left(14-\sqrt{7}\right).
\frac{70+14\sqrt{7}}{7}-\sqrt[3]{1000}
Do the calculations in 77+14\sqrt{7}-7.
\frac{70+14\sqrt{7}}{7}-10
Calculate \sqrt[3]{1000} and get 10.
\frac{70+14\sqrt{7}}{7}-\frac{10\times 7}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10 times \frac{7}{7}.
\frac{70+14\sqrt{7}-10\times 7}{7}
Since \frac{70+14\sqrt{7}}{7} and \frac{10\times 7}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{70+14\sqrt{7}-70}{7}
Do the multiplications in 70+14\sqrt{7}-10\times 7.
\frac{14\sqrt{7}}{7}
Do the calculations in 70+14\sqrt{7}-70.
2\sqrt{7}
Divide 14\sqrt{7} by 7 to get 2\sqrt{7}.