Evaluate
\sqrt{2}+\sqrt{5}\approx 3.65028154
Share
Copied to clipboard
\sqrt{10}\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{5}}\right)+\sqrt{8}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{10}\left(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{5}}\right)+\sqrt{8}
The square of \sqrt{2} is 2.
\sqrt{10}\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)+\sqrt{8}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{10}\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{5}}{5}\right)+\sqrt{8}
The square of \sqrt{5} is 5.
\sqrt{10}\left(\frac{5\sqrt{2}}{10}-\frac{2\sqrt{5}}{10}\right)+\sqrt{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 5 is 10. Multiply \frac{\sqrt{2}}{2} times \frac{5}{5}. Multiply \frac{\sqrt{5}}{5} times \frac{2}{2}.
\sqrt{10}\times \frac{5\sqrt{2}-2\sqrt{5}}{10}+\sqrt{8}
Since \frac{5\sqrt{2}}{10} and \frac{2\sqrt{5}}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}\left(5\sqrt{2}-2\sqrt{5}\right)}{10}+\sqrt{8}
Express \sqrt{10}\times \frac{5\sqrt{2}-2\sqrt{5}}{10} as a single fraction.
\frac{\sqrt{10}\left(5\sqrt{2}-2\sqrt{5}\right)}{10}+2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{10}\left(5\sqrt{2}-2\sqrt{5}\right)}{10}+\frac{10\times 2\sqrt{2}}{10}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{2} times \frac{10}{10}.
\frac{\sqrt{10}\left(5\sqrt{2}-2\sqrt{5}\right)+10\times 2\sqrt{2}}{10}
Since \frac{\sqrt{10}\left(5\sqrt{2}-2\sqrt{5}\right)}{10} and \frac{10\times 2\sqrt{2}}{10} have the same denominator, add them by adding their numerators.
\frac{10\sqrt{5}-10\sqrt{2}+20\sqrt{2}}{10}
Do the multiplications in \sqrt{10}\left(5\sqrt{2}-2\sqrt{5}\right)+10\times 2\sqrt{2}.
\frac{10\sqrt{5}+10\sqrt{2}}{10}
Do the calculations in 10\sqrt{5}-10\sqrt{2}+20\sqrt{2}.
\sqrt{5}+\sqrt{2}
Divide each term of 10\sqrt{5}+10\sqrt{2} by 10 to get \sqrt{5}+\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}