Solve for x
x=1
x=-1
Graph
Share
Copied to clipboard
\sqrt{1-x}=\sqrt{2}-\sqrt{1+x}
Subtract \sqrt{1+x} from both sides of the equation.
\left(\sqrt{1-x}\right)^{2}=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
Square both sides of the equation.
1-x=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
1-x=\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-\sqrt{1+x}\right)^{2}.
1-x=2-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
The square of \sqrt{2} is 2.
1-x=2-2\sqrt{2}\sqrt{1+x}+1+x
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
1-x=3-2\sqrt{2}\sqrt{1+x}+x
Add 2 and 1 to get 3.
1-x-\left(3+x\right)=-2\sqrt{2}\sqrt{1+x}
Subtract 3+x from both sides of the equation.
1-x-3-x=-2\sqrt{2}\sqrt{1+x}
To find the opposite of 3+x, find the opposite of each term.
-2-x-x=-2\sqrt{2}\sqrt{1+x}
Subtract 3 from 1 to get -2.
-2-2x=-2\sqrt{2}\sqrt{1+x}
Combine -x and -x to get -2x.
\left(-2-2x\right)^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
Square both sides of the equation.
4+8x+4x^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-2x\right)^{2}.
4+8x+4x^{2}=\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
Expand \left(-2\sqrt{2}\sqrt{1+x}\right)^{2}.
4+8x+4x^{2}=4\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4+8x+4x^{2}=4\times 2\left(\sqrt{1+x}\right)^{2}
The square of \sqrt{2} is 2.
4+8x+4x^{2}=8\left(\sqrt{1+x}\right)^{2}
Multiply 4 and 2 to get 8.
4+8x+4x^{2}=8\left(1+x\right)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
4+8x+4x^{2}=8+8x
Use the distributive property to multiply 8 by 1+x.
4+8x+4x^{2}-8=8x
Subtract 8 from both sides.
-4+8x+4x^{2}=8x
Subtract 8 from 4 to get -4.
-4+8x+4x^{2}-8x=0
Subtract 8x from both sides.
-4+4x^{2}=0
Combine 8x and -8x to get 0.
-1+x^{2}=0
Divide both sides by 4.
\left(x-1\right)\left(x+1\right)=0
Consider -1+x^{2}. Rewrite -1+x^{2} as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
\sqrt{1-1}+\sqrt{1+1}=\sqrt{2}
Substitute 1 for x in the equation \sqrt{1-x}+\sqrt{1+x}=\sqrt{2}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=1 satisfies the equation.
\sqrt{1-\left(-1\right)}+\sqrt{1-1}=\sqrt{2}
Substitute -1 for x in the equation \sqrt{1-x}+\sqrt{1+x}=\sqrt{2}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=-1 satisfies the equation.
x=1 x=-1
List all solutions of \sqrt{1-x}=-\sqrt{x+1}+\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}