Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{1-x}=\sqrt{2}-\sqrt{1+x}
Subtract \sqrt{1+x} from both sides of the equation.
\left(\sqrt{1-x}\right)^{2}=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
Square both sides of the equation.
1-x=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
1-x=\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-\sqrt{1+x}\right)^{2}.
1-x=2-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
The square of \sqrt{2} is 2.
1-x=2-2\sqrt{2}\sqrt{1+x}+1+x
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
1-x=3-2\sqrt{2}\sqrt{1+x}+x
Add 2 and 1 to get 3.
1-x-\left(3+x\right)=-2\sqrt{2}\sqrt{1+x}
Subtract 3+x from both sides of the equation.
1-x-3-x=-2\sqrt{2}\sqrt{1+x}
To find the opposite of 3+x, find the opposite of each term.
-2-x-x=-2\sqrt{2}\sqrt{1+x}
Subtract 3 from 1 to get -2.
-2-2x=-2\sqrt{2}\sqrt{1+x}
Combine -x and -x to get -2x.
\left(-2-2x\right)^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
Square both sides of the equation.
4+8x+4x^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-2x\right)^{2}.
4+8x+4x^{2}=\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
Expand \left(-2\sqrt{2}\sqrt{1+x}\right)^{2}.
4+8x+4x^{2}=4\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4+8x+4x^{2}=4\times 2\left(\sqrt{1+x}\right)^{2}
The square of \sqrt{2} is 2.
4+8x+4x^{2}=8\left(\sqrt{1+x}\right)^{2}
Multiply 4 and 2 to get 8.
4+8x+4x^{2}=8\left(1+x\right)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
4+8x+4x^{2}=8+8x
Use the distributive property to multiply 8 by 1+x.
4+8x+4x^{2}-8=8x
Subtract 8 from both sides.
-4+8x+4x^{2}=8x
Subtract 8 from 4 to get -4.
-4+8x+4x^{2}-8x=0
Subtract 8x from both sides.
-4+4x^{2}=0
Combine 8x and -8x to get 0.
-1+x^{2}=0
Divide both sides by 4.
\left(x-1\right)\left(x+1\right)=0
Consider -1+x^{2}. Rewrite -1+x^{2} as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
\sqrt{1-1}+\sqrt{1+1}=\sqrt{2}
Substitute 1 for x in the equation \sqrt{1-x}+\sqrt{1+x}=\sqrt{2}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=1 satisfies the equation.
\sqrt{1-\left(-1\right)}+\sqrt{1-1}=\sqrt{2}
Substitute -1 for x in the equation \sqrt{1-x}+\sqrt{1+x}=\sqrt{2}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=-1 satisfies the equation.
x=1 x=-1
List all solutions of \sqrt{1-x}=-\sqrt{x+1}+\sqrt{2}.