Solve for x
x=\frac{\sqrt{3}}{2}\approx 0.866025404
Graph
Share
Copied to clipboard
\left(\sqrt{1+x}\right)^{2}=\left(1+\sqrt{1-x}\right)^{2}
Square both sides of the equation.
1+x=\left(1+\sqrt{1-x}\right)^{2}
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
1+x=1+2\sqrt{1-x}+\left(\sqrt{1-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{1-x}\right)^{2}.
1+x=1+2\sqrt{1-x}+1-x
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
1+x=2+2\sqrt{1-x}-x
Add 1 and 1 to get 2.
1+x-\left(2-x\right)=2\sqrt{1-x}
Subtract 2-x from both sides of the equation.
1+x-2+x=2\sqrt{1-x}
To find the opposite of 2-x, find the opposite of each term.
-1+x+x=2\sqrt{1-x}
Subtract 2 from 1 to get -1.
-1+2x=2\sqrt{1-x}
Combine x and x to get 2x.
\left(-1+2x\right)^{2}=\left(2\sqrt{1-x}\right)^{2}
Square both sides of the equation.
1-4x+4x^{2}=\left(2\sqrt{1-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+2x\right)^{2}.
1-4x+4x^{2}=2^{2}\left(\sqrt{1-x}\right)^{2}
Expand \left(2\sqrt{1-x}\right)^{2}.
1-4x+4x^{2}=4\left(\sqrt{1-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
1-4x+4x^{2}=4\left(1-x\right)
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
1-4x+4x^{2}=4-4x
Use the distributive property to multiply 4 by 1-x.
1-4x+4x^{2}+4x=4
Add 4x to both sides.
1+4x^{2}=4
Combine -4x and 4x to get 0.
4x^{2}=4-1
Subtract 1 from both sides.
4x^{2}=3
Subtract 1 from 4 to get 3.
x^{2}=\frac{3}{4}
Divide both sides by 4.
x=\frac{\sqrt{3}}{2} x=-\frac{\sqrt{3}}{2}
Take the square root of both sides of the equation.
\sqrt{1+\frac{\sqrt{3}}{2}}=1+\sqrt{1-\frac{\sqrt{3}}{2}}
Substitute \frac{\sqrt{3}}{2} for x in the equation \sqrt{1+x}=1+\sqrt{1-x}.
\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{3}}{2} satisfies the equation.
\sqrt{1-\frac{\sqrt{3}}{2}}=1+\sqrt{1-\left(-\frac{\sqrt{3}}{2}\right)}
Substitute -\frac{\sqrt{3}}{2} for x in the equation \sqrt{1+x}=1+\sqrt{1-x}.
-\left(\frac{1}{2}-\frac{1}{2}\times 3^{\frac{1}{2}}\right)=\frac{3}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{3}}{2} does not satisfy the equation.
\sqrt{1+\frac{\sqrt{3}}{2}}=1+\sqrt{1-\frac{\sqrt{3}}{2}}
Substitute \frac{\sqrt{3}}{2} for x in the equation \sqrt{1+x}=1+\sqrt{1-x}.
\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{3}}{2} satisfies the equation.
x=\frac{\sqrt{3}}{2}
Equation \sqrt{x+1}=\sqrt{1-x}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}