Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{1+x^{2}}\sqrt{\left(\frac{4x}{x^{2}+1}\right)^{2}-\frac{8}{x^{2}+1}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{1+x^{2}}\sqrt{\frac{\left(4x\right)^{2}}{\left(x^{2}+1\right)^{2}}-\frac{8}{x^{2}+1}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
To raise \frac{4x}{x^{2}+1} to a power, raise both numerator and denominator to the power and then divide.
\left(\sqrt{1+x^{2}}\sqrt{\frac{\left(4x\right)^{2}}{\left(x^{2}+1\right)^{2}}-\frac{8\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}+1\right)^{2} and x^{2}+1 is \left(x^{2}+1\right)^{2}. Multiply \frac{8}{x^{2}+1} times \frac{x^{2}+1}{x^{2}+1}.
\left(\sqrt{1+x^{2}}\sqrt{\frac{\left(4x\right)^{2}-8\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Since \frac{\left(4x\right)^{2}}{\left(x^{2}+1\right)^{2}} and \frac{8\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\left(\sqrt{1+x^{2}}\sqrt{\frac{\left(4x\right)^{2}-8x^{2}-8}{\left(x^{2}+1\right)^{2}}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Do the multiplications in \left(4x\right)^{2}-8\left(x^{2}+1\right).
\left(\sqrt{1+x^{2}}\sqrt{\frac{8x^{2}-8}{\left(x^{2}+1\right)^{2}}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Combine like terms in \left(4x\right)^{2}-8x^{2}-8.
\left(\sqrt{1+x^{2}}\right)^{2}\left(\sqrt{\frac{8x^{2}-8}{\left(x^{2}+1\right)^{2}}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Expand \left(\sqrt{1+x^{2}}\sqrt{\frac{8x^{2}-8}{\left(x^{2}+1\right)^{2}}}\right)^{2}.
\left(1+x^{2}\right)\left(\sqrt{\frac{8x^{2}-8}{\left(x^{2}+1\right)^{2}}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Calculate \sqrt{1+x^{2}} to the power of 2 and get 1+x^{2}.
\left(1+x^{2}\right)\left(\sqrt{\frac{8x^{2}-8}{\left(x^{2}\right)^{2}+2x^{2}+1}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
\left(1+x^{2}\right)\left(\sqrt{\frac{8x^{2}-8}{x^{4}+2x^{2}+1}}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(1+x^{2}\right)\times \frac{8x^{2}-8}{x^{4}+2x^{2}+1}=\left(\sqrt{x^{2}-1}\right)^{2}
Calculate \sqrt{\frac{8x^{2}-8}{x^{4}+2x^{2}+1}} to the power of 2 and get \frac{8x^{2}-8}{x^{4}+2x^{2}+1}.
\frac{\left(1+x^{2}\right)\left(8x^{2}-8\right)}{x^{4}+2x^{2}+1}=\left(\sqrt{x^{2}-1}\right)^{2}
Express \left(1+x^{2}\right)\times \frac{8x^{2}-8}{x^{4}+2x^{2}+1} as a single fraction.
\frac{\left(1+x^{2}\right)\left(8x^{2}-8\right)}{x^{4}+2x^{2}+1}=x^{2}-1
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
\frac{8\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}}=x^{2}-1
Factor the expressions that are not already factored in \frac{\left(1+x^{2}\right)\left(8x^{2}-8\right)}{x^{4}+2x^{2}+1}.
\frac{8\left(x-1\right)\left(x+1\right)}{x^{2}+1}=x^{2}-1
Cancel out x^{2}+1 in both numerator and denominator.
8\left(x-1\right)\left(x+1\right)=\left(x^{2}+1\right)x^{2}+\left(x^{2}+1\right)\left(-1\right)
Multiply both sides of the equation by x^{2}+1.
\left(8x-8\right)\left(x+1\right)=\left(x^{2}+1\right)x^{2}+\left(x^{2}+1\right)\left(-1\right)
Use the distributive property to multiply 8 by x-1.
8x^{2}-8=\left(x^{2}+1\right)x^{2}+\left(x^{2}+1\right)\left(-1\right)
Use the distributive property to multiply 8x-8 by x+1 and combine like terms.
8x^{2}-8=x^{4}+x^{2}+\left(x^{2}+1\right)\left(-1\right)
Use the distributive property to multiply x^{2}+1 by x^{2}.
8x^{2}-8=x^{4}+x^{2}-x^{2}-1
Use the distributive property to multiply x^{2}+1 by -1.
8x^{2}-8=x^{4}-1
Combine x^{2} and -x^{2} to get 0.
8x^{2}-8-x^{4}=-1
Subtract x^{4} from both sides.
8x^{2}-8-x^{4}+1=0
Add 1 to both sides.
8x^{2}-7-x^{4}=0
Add -8 and 1 to get -7.
-t^{2}+8t-7=0
Substitute t for x^{2}.
t=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-7\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 8 for b, and -7 for c in the quadratic formula.
t=\frac{-8±6}{-2}
Do the calculations.
t=1 t=7
Solve the equation t=\frac{-8±6}{-2} when ± is plus and when ± is minus.
x=1 x=-1 x=\sqrt{7} x=-\sqrt{7}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\sqrt{1+1^{2}}\sqrt{\left(\frac{4\times 1}{1^{2}+1}\right)^{2}-\frac{8}{1^{2}+1}}=\sqrt{1^{2}-1}
Substitute 1 for x in the equation \sqrt{1+x^{2}}\sqrt{\left(\frac{4x}{x^{2}+1}\right)^{2}-\frac{8}{x^{2}+1}}=\sqrt{x^{2}-1}.
0=0
Simplify. The value x=1 satisfies the equation.
\sqrt{1+\left(-1\right)^{2}}\sqrt{\left(\frac{4\left(-1\right)}{\left(-1\right)^{2}+1}\right)^{2}-\frac{8}{\left(-1\right)^{2}+1}}=\sqrt{\left(-1\right)^{2}-1}
Substitute -1 for x in the equation \sqrt{1+x^{2}}\sqrt{\left(\frac{4x}{x^{2}+1}\right)^{2}-\frac{8}{x^{2}+1}}=\sqrt{x^{2}-1}.
0=0
Simplify. The value x=-1 satisfies the equation.
\sqrt{1+\left(\sqrt{7}\right)^{2}}\sqrt{\left(\frac{4\sqrt{7}}{\left(\sqrt{7}\right)^{2}+1}\right)^{2}-\frac{8}{\left(\sqrt{7}\right)^{2}+1}}=\sqrt{\left(\sqrt{7}\right)^{2}-1}
Substitute \sqrt{7} for x in the equation \sqrt{1+x^{2}}\sqrt{\left(\frac{4x}{x^{2}+1}\right)^{2}-\frac{8}{x^{2}+1}}=\sqrt{x^{2}-1}.
6^{\frac{1}{2}}=6^{\frac{1}{2}}
Simplify. The value x=\sqrt{7} satisfies the equation.
\sqrt{1+\left(-\sqrt{7}\right)^{2}}\sqrt{\left(\frac{4\left(-\sqrt{7}\right)}{\left(-\sqrt{7}\right)^{2}+1}\right)^{2}-\frac{8}{\left(-\sqrt{7}\right)^{2}+1}}=\sqrt{\left(-\sqrt{7}\right)^{2}-1}
Substitute -\sqrt{7} for x in the equation \sqrt{1+x^{2}}\sqrt{\left(\frac{4x}{x^{2}+1}\right)^{2}-\frac{8}{x^{2}+1}}=\sqrt{x^{2}-1}.
6^{\frac{1}{2}}=6^{\frac{1}{2}}
Simplify. The value x=-\sqrt{7} satisfies the equation.
x=1 x=-1 x=\sqrt{7} x=-\sqrt{7}
List all solutions of \sqrt{\left(\frac{4x}{x^{2}+1}\right)^{2}-\frac{8}{x^{2}+1}}\sqrt{x^{2}+1}=\sqrt{x^{2}-1}.