Solve for x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
\left(\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Square both sides of the equation.
\left(\sqrt{\frac{2}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\left(\sqrt{\frac{2+1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\left(\sqrt{\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Add 2 and 1 to get 3.
\left(\sqrt{\frac{6}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Least common multiple of 4 and 8 is 8. Convert \frac{3}{4} and \frac{1}{8} to fractions with denominator 8.
\left(\sqrt{\frac{6+1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Since \frac{6}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\left(\sqrt{\frac{7}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Add 6 and 1 to get 7.
\left(\sqrt{\frac{14}{16}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Least common multiple of 8 and 16 is 16. Convert \frac{7}{8} and \frac{1}{16} to fractions with denominator 16.
\left(\sqrt{\frac{14+1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Since \frac{14}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\left(\sqrt{\frac{15}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Add 14 and 1 to get 15.
\frac{15}{16}+\frac{1}{2}x=x^{2}
Calculate \sqrt{\frac{15}{16}+\frac{1}{2}x} to the power of 2 and get \frac{15}{16}+\frac{1}{2}x.
\frac{15}{16}+\frac{1}{2}x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+\frac{1}{2}x+\frac{15}{16}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\times \frac{15}{16}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{1}{2} for b, and \frac{15}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\times \frac{15}{16}}}{2\left(-1\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\times \frac{15}{16}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1+15}{4}}}{2\left(-1\right)}
Multiply 4 times \frac{15}{16}.
x=\frac{-\frac{1}{2}±\sqrt{4}}{2\left(-1\right)}
Add \frac{1}{4} to \frac{15}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{-\frac{1}{2}±2}{-2}
Multiply 2 times -1.
x=\frac{\frac{3}{2}}{-2}
Now solve the equation x=\frac{-\frac{1}{2}±2}{-2} when ± is plus. Add -\frac{1}{2} to 2.
x=-\frac{3}{4}
Divide \frac{3}{2} by -2.
x=-\frac{\frac{5}{2}}{-2}
Now solve the equation x=\frac{-\frac{1}{2}±2}{-2} when ± is minus. Subtract 2 from -\frac{1}{2}.
x=\frac{5}{4}
Divide -\frac{5}{2} by -2.
x=-\frac{3}{4} x=\frac{5}{4}
The equation is now solved.
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}\left(-\frac{3}{4}\right)}=-\frac{3}{4}
Substitute -\frac{3}{4} for x in the equation \sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}=x.
\frac{3}{4}=-\frac{3}{4}
Simplify. The value x=-\frac{3}{4} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}\times \frac{5}{4}}=\frac{5}{4}
Substitute \frac{5}{4} for x in the equation \sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}=x.
\frac{5}{4}=\frac{5}{4}
Simplify. The value x=\frac{5}{4} satisfies the equation.
x=\frac{5}{4}
Equation \sqrt{\frac{x}{2}+\frac{15}{16}}=x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}