Evaluate
3\sqrt{15}\approx 11.618950039
Share
Copied to clipboard
\sqrt{-9-4\times 9\left(-4\right)}
Calculate 3 to the power of 2 and get 9.
\sqrt{-9-36\left(-4\right)}
Multiply 4 and 9 to get 36.
\sqrt{-9-\left(-144\right)}
Multiply 36 and -4 to get -144.
\sqrt{-9+144}
The opposite of -144 is 144.
\sqrt{135}
Add -9 and 144 to get 135.
3\sqrt{15}
Factor 135=3^{2}\times 15. Rewrite the square root of the product \sqrt{3^{2}\times 15} as the product of square roots \sqrt{3^{2}}\sqrt{15}. Take the square root of 3^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}