Solve for x
x=2\sqrt{5}+7\approx 11.472135955
Graph
Share
Copied to clipboard
\sqrt{2x-5}=1+\sqrt{x-1}
Subtract -\sqrt{x-1} from both sides of the equation.
\left(\sqrt{2x-5}\right)^{2}=\left(1+\sqrt{x-1}\right)^{2}
Square both sides of the equation.
2x-5=\left(1+\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x-5} to the power of 2 and get 2x-5.
2x-5=1+2\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x-1}\right)^{2}.
2x-5=1+2\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
2x-5=2\sqrt{x-1}+x
Subtract 1 from 1 to get 0.
2x-5-x=2\sqrt{x-1}
Subtract x from both sides of the equation.
x-5=2\sqrt{x-1}
Combine 2x and -x to get x.
\left(x-5\right)^{2}=\left(2\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x^{2}-10x+25=\left(2\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=2^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(2\sqrt{x-1}\right)^{2}.
x^{2}-10x+25=4\left(\sqrt{x-1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-10x+25=4\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{2}-10x+25=4x-4
Use the distributive property to multiply 4 by x-1.
x^{2}-10x+25-4x=-4
Subtract 4x from both sides.
x^{2}-14x+25=-4
Combine -10x and -4x to get -14x.
x^{2}-14x+25+4=0
Add 4 to both sides.
x^{2}-14x+29=0
Add 25 and 4 to get 29.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 29}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 29}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-116}}{2}
Multiply -4 times 29.
x=\frac{-\left(-14\right)±\sqrt{80}}{2}
Add 196 to -116.
x=\frac{-\left(-14\right)±4\sqrt{5}}{2}
Take the square root of 80.
x=\frac{14±4\sqrt{5}}{2}
The opposite of -14 is 14.
x=\frac{4\sqrt{5}+14}{2}
Now solve the equation x=\frac{14±4\sqrt{5}}{2} when ± is plus. Add 14 to 4\sqrt{5}.
x=2\sqrt{5}+7
Divide 14+4\sqrt{5} by 2.
x=\frac{14-4\sqrt{5}}{2}
Now solve the equation x=\frac{14±4\sqrt{5}}{2} when ± is minus. Subtract 4\sqrt{5} from 14.
x=7-2\sqrt{5}
Divide 14-4\sqrt{5} by 2.
x=2\sqrt{5}+7 x=7-2\sqrt{5}
The equation is now solved.
\sqrt{2\left(2\sqrt{5}+7\right)-5}-\sqrt{2\sqrt{5}+7-1}=1
Substitute 2\sqrt{5}+7 for x in the equation \sqrt{2x-5}-\sqrt{x-1}=1.
1=1
Simplify. The value x=2\sqrt{5}+7 satisfies the equation.
\sqrt{2\left(7-2\sqrt{5}\right)-5}-\sqrt{7-2\sqrt{5}-1}=1
Substitute 7-2\sqrt{5} for x in the equation \sqrt{2x-5}-\sqrt{x-1}=1.
-1=1
Simplify. The value x=7-2\sqrt{5} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\left(2\sqrt{5}+7\right)-5}-\sqrt{2\sqrt{5}+7-1}=1
Substitute 2\sqrt{5}+7 for x in the equation \sqrt{2x-5}-\sqrt{x-1}=1.
1=1
Simplify. The value x=2\sqrt{5}+7 satisfies the equation.
x=2\sqrt{5}+7
Equation \sqrt{2x-5}=\sqrt{x-1}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}