\sqrt{ ( } { \left( \frac{ 11 }{ 3 } \right) }^{ 2 } + { \left( \frac{ 56 }{ 9 } \right) }^{ 2 } )
Evaluate
\frac{65}{9}\approx 7.222222222
Factor
\frac{5 \cdot 13}{3 ^ {2}} = 7\frac{2}{9} = 7.222222222222222
Share
Copied to clipboard
\sqrt{\frac{121}{9}+\left(\frac{56}{9}\right)^{2}}
Calculate \frac{11}{3} to the power of 2 and get \frac{121}{9}.
\sqrt{\frac{121}{9}+\frac{3136}{81}}
Calculate \frac{56}{9} to the power of 2 and get \frac{3136}{81}.
\sqrt{\frac{1089}{81}+\frac{3136}{81}}
Least common multiple of 9 and 81 is 81. Convert \frac{121}{9} and \frac{3136}{81} to fractions with denominator 81.
\sqrt{\frac{1089+3136}{81}}
Since \frac{1089}{81} and \frac{3136}{81} have the same denominator, add them by adding their numerators.
\sqrt{\frac{4225}{81}}
Add 1089 and 3136 to get 4225.
\frac{65}{9}
Rewrite the square root of the division \frac{4225}{81} as the division of square roots \frac{\sqrt{4225}}{\sqrt{81}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}