Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}-9x+4}\right)^{2}=\left(\sqrt{x^{2}-5}\right)^{2}
Square both sides of the equation.
x^{2}-9x+4=\left(\sqrt{x^{2}-5}\right)^{2}
Calculate \sqrt{x^{2}-9x+4} to the power of 2 and get x^{2}-9x+4.
x^{2}-9x+4=x^{2}-5
Calculate \sqrt{x^{2}-5} to the power of 2 and get x^{2}-5.
x^{2}-9x+4-x^{2}=-5
Subtract x^{2} from both sides.
-9x+4=-5
Combine x^{2} and -x^{2} to get 0.
-9x=-5-4
Subtract 4 from both sides.
-9x=-9
Subtract 4 from -5 to get -9.
x=\frac{-9}{-9}
Divide both sides by -9.
x=1
Divide -9 by -9 to get 1.
\sqrt{1^{2}-9+4}=\sqrt{1^{2}-5}
Substitute 1 for x in the equation \sqrt{x^{2}-9x+4}=\sqrt{x^{2}-5}.
2i=2i
Simplify. The value x=1 satisfies the equation.
x=1
Equation \sqrt{x^{2}-9x+4}=\sqrt{x^{2}-5} has a unique solution.