Solve for x (complex solution)
x=1
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}-9x+4}\right)^{2}=\left(\sqrt{x^{2}-5}\right)^{2}
Square both sides of the equation.
x^{2}-9x+4=\left(\sqrt{x^{2}-5}\right)^{2}
Calculate \sqrt{x^{2}-9x+4} to the power of 2 and get x^{2}-9x+4.
x^{2}-9x+4=x^{2}-5
Calculate \sqrt{x^{2}-5} to the power of 2 and get x^{2}-5.
x^{2}-9x+4-x^{2}=-5
Subtract x^{2} from both sides.
-9x+4=-5
Combine x^{2} and -x^{2} to get 0.
-9x=-5-4
Subtract 4 from both sides.
-9x=-9
Subtract 4 from -5 to get -9.
x=\frac{-9}{-9}
Divide both sides by -9.
x=1
Divide -9 by -9 to get 1.
\sqrt{1^{2}-9+4}=\sqrt{1^{2}-5}
Substitute 1 for x in the equation \sqrt{x^{2}-9x+4}=\sqrt{x^{2}-5}.
2i=2i
Simplify. The value x=1 satisfies the equation.
x=1
Equation \sqrt{x^{2}-9x+4}=\sqrt{x^{2}-5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}