Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}-3x+2}=1+\sqrt{x^{2}+x+x}
Subtract -\sqrt{x^{2}+x+x} from both sides of the equation.
\sqrt{x^{2}-3x+2}=1+\sqrt{x^{2}+2x}
Combine x and x to get 2x.
\left(\sqrt{x^{2}-3x+2}\right)^{2}=\left(1+\sqrt{x^{2}+2x}\right)^{2}
Square both sides of the equation.
x^{2}-3x+2=\left(1+\sqrt{x^{2}+2x}\right)^{2}
Calculate \sqrt{x^{2}-3x+2} to the power of 2 and get x^{2}-3x+2.
x^{2}-3x+2=1+2\sqrt{x^{2}+2x}+\left(\sqrt{x^{2}+2x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x^{2}+2x}\right)^{2}.
x^{2}-3x+2=1+2\sqrt{x^{2}+2x}+x^{2}+2x
Calculate \sqrt{x^{2}+2x} to the power of 2 and get x^{2}+2x.
x^{2}-3x+2-\left(1+x^{2}+2x\right)=2\sqrt{x^{2}+2x}
Subtract 1+x^{2}+2x from both sides of the equation.
x^{2}-3x+2-1-x^{2}-2x=2\sqrt{x^{2}+2x}
To find the opposite of 1+x^{2}+2x, find the opposite of each term.
x^{2}-3x+1-x^{2}-2x=2\sqrt{x^{2}+2x}
Subtract 1 from 2 to get 1.
-3x+1-2x=2\sqrt{x^{2}+2x}
Combine x^{2} and -x^{2} to get 0.
-5x+1=2\sqrt{x^{2}+2x}
Combine -3x and -2x to get -5x.
\left(-5x+1\right)^{2}=\left(2\sqrt{x^{2}+2x}\right)^{2}
Square both sides of the equation.
25x^{2}-10x+1=\left(2\sqrt{x^{2}+2x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-5x+1\right)^{2}.
25x^{2}-10x+1=2^{2}\left(\sqrt{x^{2}+2x}\right)^{2}
Expand \left(2\sqrt{x^{2}+2x}\right)^{2}.
25x^{2}-10x+1=4\left(\sqrt{x^{2}+2x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}-10x+1=4\left(x^{2}+2x\right)
Calculate \sqrt{x^{2}+2x} to the power of 2 and get x^{2}+2x.
25x^{2}-10x+1=4x^{2}+8x
Use the distributive property to multiply 4 by x^{2}+2x.
25x^{2}-10x+1-4x^{2}=8x
Subtract 4x^{2} from both sides.
21x^{2}-10x+1=8x
Combine 25x^{2} and -4x^{2} to get 21x^{2}.
21x^{2}-10x+1-8x=0
Subtract 8x from both sides.
21x^{2}-18x+1=0
Combine -10x and -8x to get -18x.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 21}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -18 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 21}}{2\times 21}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-84}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-18\right)±\sqrt{240}}{2\times 21}
Add 324 to -84.
x=\frac{-\left(-18\right)±4\sqrt{15}}{2\times 21}
Take the square root of 240.
x=\frac{18±4\sqrt{15}}{2\times 21}
The opposite of -18 is 18.
x=\frac{18±4\sqrt{15}}{42}
Multiply 2 times 21.
x=\frac{4\sqrt{15}+18}{42}
Now solve the equation x=\frac{18±4\sqrt{15}}{42} when ± is plus. Add 18 to 4\sqrt{15}.
x=\frac{2\sqrt{15}}{21}+\frac{3}{7}
Divide 18+4\sqrt{15} by 42.
x=\frac{18-4\sqrt{15}}{42}
Now solve the equation x=\frac{18±4\sqrt{15}}{42} when ± is minus. Subtract 4\sqrt{15} from 18.
x=-\frac{2\sqrt{15}}{21}+\frac{3}{7}
Divide 18-4\sqrt{15} by 42.
x=\frac{2\sqrt{15}}{21}+\frac{3}{7} x=-\frac{2\sqrt{15}}{21}+\frac{3}{7}
The equation is now solved.
\sqrt{\left(\frac{2\sqrt{15}}{21}+\frac{3}{7}\right)^{2}-3\left(\frac{2\sqrt{15}}{21}+\frac{3}{7}\right)+2}-\sqrt{\left(\frac{2\sqrt{15}}{21}+\frac{3}{7}\right)^{2}+\frac{2\sqrt{15}}{21}+\frac{3}{7}+\frac{2\sqrt{15}}{21}+\frac{3}{7}}=1
Substitute \frac{2\sqrt{15}}{21}+\frac{3}{7} for x in the equation \sqrt{x^{2}-3x+2}-\sqrt{x^{2}+x+x}=1.
-1=1
Simplify. The value x=\frac{2\sqrt{15}}{21}+\frac{3}{7} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\left(-\frac{2\sqrt{15}}{21}+\frac{3}{7}\right)^{2}-3\left(-\frac{2\sqrt{15}}{21}+\frac{3}{7}\right)+2}-\sqrt{\left(-\frac{2\sqrt{15}}{21}+\frac{3}{7}\right)^{2}-\frac{2\sqrt{15}}{21}+\frac{3}{7}-\frac{2\sqrt{15}}{21}+\frac{3}{7}}=1
Substitute -\frac{2\sqrt{15}}{21}+\frac{3}{7} for x in the equation \sqrt{x^{2}-3x+2}-\sqrt{x^{2}+x+x}=1.
1=1
Simplify. The value x=-\frac{2\sqrt{15}}{21}+\frac{3}{7} satisfies the equation.
x=-\frac{2\sqrt{15}}{21}+\frac{3}{7}
Equation \sqrt{x^{2}-3x+2}=\sqrt{x^{2}+2x}+1 has a unique solution.