Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+4}\right)^{2}=\left(4-x\right)^{2}
Square both sides of the equation.
x^{2}+4=\left(4-x\right)^{2}
Calculate \sqrt{x^{2}+4} to the power of 2 and get x^{2}+4.
x^{2}+4=16-8x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
x^{2}+4+8x=16+x^{2}
Add 8x to both sides.
x^{2}+4+8x-x^{2}=16
Subtract x^{2} from both sides.
4+8x=16
Combine x^{2} and -x^{2} to get 0.
8x=16-4
Subtract 4 from both sides.
8x=12
Subtract 4 from 16 to get 12.
x=\frac{12}{8}
Divide both sides by 8.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
\sqrt{\left(\frac{3}{2}\right)^{2}+4}=4-\frac{3}{2}
Substitute \frac{3}{2} for x in the equation \sqrt{x^{2}+4}=4-x.
\frac{5}{2}=\frac{5}{2}
Simplify. The value x=\frac{3}{2} satisfies the equation.
x=\frac{3}{2}
Equation \sqrt{x^{2}+4}=4-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}