Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}+4}\right)^{2}=\left(4-x\right)^{2}
Square both sides of the equation.
x^{2}+4=\left(4-x\right)^{2}
Calculate \sqrt{x^{2}+4} to the power of 2 and get x^{2}+4.
x^{2}+4=16-8x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
x^{2}+4+8x=16+x^{2}
Add 8x to both sides.
x^{2}+4+8x-x^{2}=16
Subtract x^{2} from both sides.
4+8x=16
Combine x^{2} and -x^{2} to get 0.
8x=16-4
Subtract 4 from both sides.
8x=12
Subtract 4 from 16 to get 12.
x=\frac{12}{8}
Divide both sides by 8.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
\sqrt{\left(\frac{3}{2}\right)^{2}+4}=4-\frac{3}{2}
Substitute \frac{3}{2} for x in the equation \sqrt{x^{2}+4}=4-x.
\frac{5}{2}=\frac{5}{2}
Simplify. The value x=\frac{3}{2} satisfies the equation.
x=\frac{3}{2}
Equation \sqrt{x^{2}+4}=4-x has a unique solution.