Solve for x
x=-3
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+2x+1}\right)^{2}=\left(x+5\right)^{2}
Square both sides of the equation.
x^{2}+2x+1=\left(x+5\right)^{2}
Calculate \sqrt{x^{2}+2x+1} to the power of 2 and get x^{2}+2x+1.
x^{2}+2x+1=x^{2}+10x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+2x+1-x^{2}=10x+25
Subtract x^{2} from both sides.
2x+1=10x+25
Combine x^{2} and -x^{2} to get 0.
2x+1-10x=25
Subtract 10x from both sides.
-8x+1=25
Combine 2x and -10x to get -8x.
-8x=25-1
Subtract 1 from both sides.
-8x=24
Subtract 1 from 25 to get 24.
x=\frac{24}{-8}
Divide both sides by -8.
x=-3
Divide 24 by -8 to get -3.
\sqrt{\left(-3\right)^{2}+2\left(-3\right)+1}=-3+5
Substitute -3 for x in the equation \sqrt{x^{2}+2x+1}=x+5.
2=2
Simplify. The value x=-3 satisfies the equation.
x=-3
Equation \sqrt{x^{2}+2x+1}=x+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}