Solve for x
x = \frac{\sqrt{69} - 1}{2} \approx 3.653311931
x=\frac{1-\sqrt{69}}{2}\approx -3.653311931
Graph
Share
Copied to clipboard
\sqrt{x^{2}}=4^{2}-x^{2}+1
Subtract -1 from both sides of the equation.
\sqrt{x^{2}}=16-x^{2}+1
Calculate 4 to the power of 2 and get 16.
\sqrt{x^{2}}=17-x^{2}
Add 16 and 1 to get 17.
\left(\sqrt{x^{2}}\right)^{2}=\left(17-x^{2}\right)^{2}
Square both sides of the equation.
x^{2}=\left(17-x^{2}\right)^{2}
Calculate \sqrt{x^{2}} to the power of 2 and get x^{2}.
x^{2}=289-34x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17-x^{2}\right)^{2}.
x^{2}=289-34x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}-289=-34x^{2}+x^{4}
Subtract 289 from both sides.
x^{2}-289+34x^{2}=x^{4}
Add 34x^{2} to both sides.
35x^{2}-289=x^{4}
Combine x^{2} and 34x^{2} to get 35x^{2}.
35x^{2}-289-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+35t-289=0
Substitute t for x^{2}.
t=\frac{-35±\sqrt{35^{2}-4\left(-1\right)\left(-289\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 35 for b, and -289 for c in the quadratic formula.
t=\frac{-35±\sqrt{69}}{-2}
Do the calculations.
t=\frac{35-\sqrt{69}}{2} t=\frac{\sqrt{69}+35}{2}
Solve the equation t=\frac{-35±\sqrt{69}}{-2} when ± is plus and when ± is minus.
x=-\frac{1-\sqrt{69}}{2} x=\frac{1-\sqrt{69}}{2} x=\frac{\sqrt{69}+1}{2} x=-\frac{\sqrt{69}+1}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\sqrt{\left(-\frac{1-\sqrt{69}}{2}\right)^{2}}-1=4^{2}-\left(-\frac{1-\sqrt{69}}{2}\right)^{2}
Substitute -\frac{1-\sqrt{69}}{2} for x in the equation \sqrt{x^{2}}-1=4^{2}-x^{2}.
-\frac{3}{2}+\frac{1}{2}\times 69^{\frac{1}{2}}=-\frac{3}{2}+\frac{1}{2}\times 69^{\frac{1}{2}}
Simplify. The value x=-\frac{1-\sqrt{69}}{2} satisfies the equation.
\sqrt{\left(\frac{1-\sqrt{69}}{2}\right)^{2}}-1=4^{2}-\left(\frac{1-\sqrt{69}}{2}\right)^{2}
Substitute \frac{1-\sqrt{69}}{2} for x in the equation \sqrt{x^{2}}-1=4^{2}-x^{2}.
-\frac{3}{2}+\frac{1}{2}\times 69^{\frac{1}{2}}=-\frac{3}{2}+\frac{1}{2}\times 69^{\frac{1}{2}}
Simplify. The value x=\frac{1-\sqrt{69}}{2} satisfies the equation.
\sqrt{\left(\frac{\sqrt{69}+1}{2}\right)^{2}}-1=4^{2}-\left(\frac{\sqrt{69}+1}{2}\right)^{2}
Substitute \frac{\sqrt{69}+1}{2} for x in the equation \sqrt{x^{2}}-1=4^{2}-x^{2}.
-\frac{1}{2}+\frac{1}{2}\times 69^{\frac{1}{2}}=-\frac{3}{2}-\frac{1}{2}\times 69^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{69}+1}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\left(-\frac{\sqrt{69}+1}{2}\right)^{2}}-1=4^{2}-\left(-\frac{\sqrt{69}+1}{2}\right)^{2}
Substitute -\frac{\sqrt{69}+1}{2} for x in the equation \sqrt{x^{2}}-1=4^{2}-x^{2}.
-\frac{1}{2}+\frac{1}{2}\times 69^{\frac{1}{2}}=-\frac{3}{2}-\frac{1}{2}\times 69^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{69}+1}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=-\frac{1-\sqrt{69}}{2} x=\frac{1-\sqrt{69}}{2}
List all solutions of \sqrt{x^{2}}=17-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}