\sqrt{ { 5 }^{ 2 } \frac{ 21 }{ \frac{ 55 }{ } } }
Evaluate
\frac{\sqrt{1155}}{11}\approx 3.089571903
Share
Copied to clipboard
\sqrt{25\times \frac{21}{\frac{55}{1}}}
Calculate 5 to the power of 2 and get 25.
\sqrt{25\times \frac{21}{55}}
Divide 21 by \frac{55}{1} by multiplying 21 by the reciprocal of \frac{55}{1}.
\sqrt{\frac{25\times 21}{55}}
Express 25\times \frac{21}{55} as a single fraction.
\sqrt{\frac{525}{55}}
Multiply 25 and 21 to get 525.
\sqrt{\frac{105}{11}}
Reduce the fraction \frac{525}{55} to lowest terms by extracting and canceling out 5.
\frac{\sqrt{105}}{\sqrt{11}}
Rewrite the square root of the division \sqrt{\frac{105}{11}} as the division of square roots \frac{\sqrt{105}}{\sqrt{11}}.
\frac{\sqrt{105}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{105}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{105}\sqrt{11}}{11}
The square of \sqrt{11} is 11.
\frac{\sqrt{1155}}{11}
To multiply \sqrt{105} and \sqrt{11}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}