Solve for x
x=\sqrt{3}\approx 1.732050808
Graph
Share
Copied to clipboard
\left(\sqrt{3^{2}+x^{2}}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
\left(\sqrt{9+x^{2}}\right)^{2}=\left(2x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9+x^{2}=\left(2x\right)^{2}
Calculate \sqrt{9+x^{2}} to the power of 2 and get 9+x^{2}.
9+x^{2}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
9+x^{2}=4x^{2}
Calculate 2 to the power of 2 and get 4.
9+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
9-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-9}{-3}
Divide both sides by -3.
x^{2}=3
Divide -9 by -3 to get 3.
x=\sqrt{3} x=-\sqrt{3}
Take the square root of both sides of the equation.
\sqrt{3^{2}+\left(\sqrt{3}\right)^{2}}=2\sqrt{3}
Substitute \sqrt{3} for x in the equation \sqrt{3^{2}+x^{2}}=2x.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Simplify. The value x=\sqrt{3} satisfies the equation.
\sqrt{3^{2}+\left(-\sqrt{3}\right)^{2}}=2\left(-\sqrt{3}\right)
Substitute -\sqrt{3} for x in the equation \sqrt{3^{2}+x^{2}}=2x.
2\times 3^{\frac{1}{2}}=-2\times 3^{\frac{1}{2}}
Simplify. The value x=-\sqrt{3} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\sqrt{3}
Equation \sqrt{x^{2}+9}=2x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}