Evaluate
10\left(\sqrt{41}+2\sqrt{29}+4\sqrt{10}+6\sqrt{5}+10\right)\approx 532.389723574
Factor
10 {(\sqrt{41} + 2 \sqrt{29} + 4 \sqrt{10} + 6 \sqrt{5} + 10)} = 532.389723574
Share
Copied to clipboard
\sqrt{400+60^{2}}+100+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 20 to the power of 2 and get 400.
\sqrt{400+3600}+100+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 60 to the power of 2 and get 3600.
\sqrt{4000}+100+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Add 400 and 3600 to get 4000.
20\sqrt{10}+100+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Factor 4000=20^{2}\times 10. Rewrite the square root of the product \sqrt{20^{2}\times 10} as the product of square roots \sqrt{20^{2}}\sqrt{10}. Take the square root of 20^{2}.
20\sqrt{10}+100+\sqrt{400+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 20 to the power of 2 and get 400.
20\sqrt{10}+100+\sqrt{400+1600}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 40 to the power of 2 and get 1600.
20\sqrt{10}+100+\sqrt{2000}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Add 400 and 1600 to get 2000.
20\sqrt{10}+100+20\sqrt{5}+\sqrt{40^{2}+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Factor 2000=20^{2}\times 5. Rewrite the square root of the product \sqrt{20^{2}\times 5} as the product of square roots \sqrt{20^{2}}\sqrt{5}. Take the square root of 20^{2}.
20\sqrt{10}+100+20\sqrt{5}+\sqrt{1600+80^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 40 to the power of 2 and get 1600.
20\sqrt{10}+100+20\sqrt{5}+\sqrt{1600+6400}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 80 to the power of 2 and get 6400.
20\sqrt{10}+100+20\sqrt{5}+\sqrt{8000}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Add 1600 and 6400 to get 8000.
20\sqrt{10}+100+20\sqrt{5}+40\sqrt{5}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Factor 8000=40^{2}\times 5. Rewrite the square root of the product \sqrt{40^{2}\times 5} as the product of square roots \sqrt{40^{2}}\sqrt{5}. Take the square root of 40^{2}.
20\sqrt{10}+100+60\sqrt{5}+\sqrt{20^{2}+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Combine 20\sqrt{5} and 40\sqrt{5} to get 60\sqrt{5}.
20\sqrt{10}+100+60\sqrt{5}+\sqrt{400+60^{2}}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 20 to the power of 2 and get 400.
20\sqrt{10}+100+60\sqrt{5}+\sqrt{400+3600}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 60 to the power of 2 and get 3600.
20\sqrt{10}+100+60\sqrt{5}+\sqrt{4000}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Add 400 and 3600 to get 4000.
20\sqrt{10}+100+60\sqrt{5}+20\sqrt{10}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Factor 4000=20^{2}\times 10. Rewrite the square root of the product \sqrt{20^{2}\times 10} as the product of square roots \sqrt{20^{2}}\sqrt{10}. Take the square root of 20^{2}.
40\sqrt{10}+100+60\sqrt{5}+\sqrt{100^{2}+40^{2}}+\sqrt{40^{2}+50^{2}}
Combine 20\sqrt{10} and 20\sqrt{10} to get 40\sqrt{10}.
40\sqrt{10}+100+60\sqrt{5}+\sqrt{10000+40^{2}}+\sqrt{40^{2}+50^{2}}
Calculate 100 to the power of 2 and get 10000.
40\sqrt{10}+100+60\sqrt{5}+\sqrt{10000+1600}+\sqrt{40^{2}+50^{2}}
Calculate 40 to the power of 2 and get 1600.
40\sqrt{10}+100+60\sqrt{5}+\sqrt{11600}+\sqrt{40^{2}+50^{2}}
Add 10000 and 1600 to get 11600.
40\sqrt{10}+100+60\sqrt{5}+20\sqrt{29}+\sqrt{40^{2}+50^{2}}
Factor 11600=20^{2}\times 29. Rewrite the square root of the product \sqrt{20^{2}\times 29} as the product of square roots \sqrt{20^{2}}\sqrt{29}. Take the square root of 20^{2}.
40\sqrt{10}+100+60\sqrt{5}+20\sqrt{29}+\sqrt{1600+50^{2}}
Calculate 40 to the power of 2 and get 1600.
40\sqrt{10}+100+60\sqrt{5}+20\sqrt{29}+\sqrt{1600+2500}
Calculate 50 to the power of 2 and get 2500.
40\sqrt{10}+100+60\sqrt{5}+20\sqrt{29}+\sqrt{4100}
Add 1600 and 2500 to get 4100.
40\sqrt{10}+100+60\sqrt{5}+20\sqrt{29}+10\sqrt{41}
Factor 4100=10^{2}\times 41. Rewrite the square root of the product \sqrt{10^{2}\times 41} as the product of square roots \sqrt{10^{2}}\sqrt{41}. Take the square root of 10^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}