Evaluate
-\frac{1001\sqrt{10}}{100}+\frac{1001}{10}\approx 68.445600622
Share
Copied to clipboard
\sqrt{10000}-\sqrt{10^{3}}+\sqrt{10^{-2}}-\sqrt{10^{-3}}
Calculate 10 to the power of 4 and get 10000.
100-\sqrt{10^{3}}+\sqrt{10^{-2}}-\sqrt{10^{-3}}
Calculate the square root of 10000 and get 100.
100-\sqrt{1000}+\sqrt{10^{-2}}-\sqrt{10^{-3}}
Calculate 10 to the power of 3 and get 1000.
100-10\sqrt{10}+\sqrt{10^{-2}}-\sqrt{10^{-3}}
Factor 1000=10^{2}\times 10. Rewrite the square root of the product \sqrt{10^{2}\times 10} as the product of square roots \sqrt{10^{2}}\sqrt{10}. Take the square root of 10^{2}.
100-10\sqrt{10}+\sqrt{\frac{1}{100}}-\sqrt{10^{-3}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
100-10\sqrt{10}+\frac{1}{10}-\sqrt{10^{-3}}
Rewrite the square root of the division \frac{1}{100} as the division of square roots \frac{\sqrt{1}}{\sqrt{100}}. Take the square root of both numerator and denominator.
\frac{1001}{10}-10\sqrt{10}-\sqrt{10^{-3}}
Add 100 and \frac{1}{10} to get \frac{1001}{10}.
\frac{1001}{10}-10\sqrt{10}-\sqrt{\frac{1}{1000}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{1001}{10}-10\sqrt{10}-\frac{\sqrt{1}}{\sqrt{1000}}
Rewrite the square root of the division \sqrt{\frac{1}{1000}} as the division of square roots \frac{\sqrt{1}}{\sqrt{1000}}.
\frac{1001}{10}-10\sqrt{10}-\frac{1}{\sqrt{1000}}
Calculate the square root of 1 and get 1.
\frac{1001}{10}-10\sqrt{10}-\frac{1}{10\sqrt{10}}
Factor 1000=10^{2}\times 10. Rewrite the square root of the product \sqrt{10^{2}\times 10} as the product of square roots \sqrt{10^{2}}\sqrt{10}. Take the square root of 10^{2}.
\frac{1001}{10}-10\sqrt{10}-\frac{\sqrt{10}}{10\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{1}{10\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{1001}{10}-10\sqrt{10}-\frac{\sqrt{10}}{10\times 10}
The square of \sqrt{10} is 10.
\frac{1001}{10}-10\sqrt{10}-\frac{\sqrt{10}}{100}
Multiply 10 and 10 to get 100.
\frac{1001\times 10}{100}-10\sqrt{10}-\frac{\sqrt{10}}{100}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 100 is 100. Multiply \frac{1001}{10} times \frac{10}{10}.
\frac{1001\times 10-\sqrt{10}}{100}-10\sqrt{10}
Since \frac{1001\times 10}{100} and \frac{\sqrt{10}}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{10010-\sqrt{10}}{100}-10\sqrt{10}
Do the multiplications in 1001\times 10-\sqrt{10}.
\frac{10010-\sqrt{10}}{100}+\frac{100\left(-10\right)\sqrt{10}}{100}
To add or subtract expressions, expand them to make their denominators the same. Multiply -10\sqrt{10} times \frac{100}{100}.
\frac{10010-\sqrt{10}+100\left(-10\right)\sqrt{10}}{100}
Since \frac{10010-\sqrt{10}}{100} and \frac{100\left(-10\right)\sqrt{10}}{100} have the same denominator, add them by adding their numerators.
\frac{10010-\sqrt{10}-1000\sqrt{10}}{100}
Do the multiplications in 10010-\sqrt{10}+100\left(-10\right)\sqrt{10}.
\frac{10010-1001\sqrt{10}}{100}
Do the calculations in 10010-\sqrt{10}-1000\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}