Solve for x
x=\frac{5-\sqrt{7}}{8}\approx 0.294281086
Graph
Quiz
Algebra
5 problems similar to:
\sqrt{ { 0.5 }^{ 2 } - { \left(x-0.5 \right) }^{ 2 } } +0.5 = 1.25-x
Share
Copied to clipboard
\sqrt{0.5^{2}-\left(x-0.5\right)^{2}}=1.25-x-0.5
Subtract 0.5 from both sides of the equation.
\sqrt{0.25-\left(x-0.5\right)^{2}}=1.25-x-0.5
Calculate 0.5 to the power of 2 and get 0.25.
\sqrt{0.25-\left(x^{2}-x+0.25\right)}=1.25-x-0.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-0.5\right)^{2}.
\sqrt{0.25-x^{2}+x-0.25}=1.25-x-0.5
To find the opposite of x^{2}-x+0.25, find the opposite of each term.
\sqrt{-x^{2}+x}=1.25-x-0.5
Subtract 0.25 from 0.25 to get 0.
\sqrt{-x^{2}+x}=0.75-x
Subtract 0.5 from 1.25 to get 0.75.
\left(\sqrt{-x^{2}+x}\right)^{2}=\left(0.75-x\right)^{2}
Square both sides of the equation.
-x^{2}+x=\left(0.75-x\right)^{2}
Calculate \sqrt{-x^{2}+x} to the power of 2 and get -x^{2}+x.
-x^{2}+x=0.5625-1.5x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.75-x\right)^{2}.
-x^{2}+x-0.5625=-1.5x+x^{2}
Subtract 0.5625 from both sides.
-x^{2}+x-0.5625+1.5x=x^{2}
Add 1.5x to both sides.
-x^{2}+2.5x-0.5625=x^{2}
Combine x and 1.5x to get 2.5x.
-x^{2}+2.5x-0.5625-x^{2}=0
Subtract x^{2} from both sides.
-2x^{2}+2.5x-0.5625=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
x=\frac{-2.5±\sqrt{2.5^{2}-4\left(-2\right)\left(-0.5625\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 2.5 for b, and -0.5625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2.5±\sqrt{6.25-4\left(-2\right)\left(-0.5625\right)}}{2\left(-2\right)}
Square 2.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-2.5±\sqrt{6.25+8\left(-0.5625\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2.5±\sqrt{6.25-4.5}}{2\left(-2\right)}
Multiply 8 times -0.5625.
x=\frac{-2.5±\sqrt{1.75}}{2\left(-2\right)}
Add 6.25 to -4.5 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-2.5±\frac{\sqrt{7}}{2}}{2\left(-2\right)}
Take the square root of 1.75.
x=\frac{-2.5±\frac{\sqrt{7}}{2}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{7}-5}{-4\times 2}
Now solve the equation x=\frac{-2.5±\frac{\sqrt{7}}{2}}{-4} when ± is plus. Add -2.5 to \frac{\sqrt{7}}{2}.
x=\frac{5-\sqrt{7}}{8}
Divide \frac{-5+\sqrt{7}}{2} by -4.
x=\frac{-\sqrt{7}-5}{-4\times 2}
Now solve the equation x=\frac{-2.5±\frac{\sqrt{7}}{2}}{-4} when ± is minus. Subtract \frac{\sqrt{7}}{2} from -2.5.
x=\frac{\sqrt{7}+5}{8}
Divide \frac{-5-\sqrt{7}}{2} by -4.
x=\frac{5-\sqrt{7}}{8} x=\frac{\sqrt{7}+5}{8}
The equation is now solved.
\sqrt{0.5^{2}-\left(\frac{5-\sqrt{7}}{8}-0.5\right)^{2}}+0.5=1.25-\frac{5-\sqrt{7}}{8}
Substitute \frac{5-\sqrt{7}}{8} for x in the equation \sqrt{0.5^{2}-\left(x-0.5\right)^{2}}+0.5=1.25-x.
\frac{1}{8}\times 7^{\frac{1}{2}}+\frac{5}{8}=\frac{5}{8}+\frac{1}{8}\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{5-\sqrt{7}}{8} satisfies the equation.
\sqrt{0.5^{2}-\left(\frac{\sqrt{7}+5}{8}-0.5\right)^{2}}+0.5=1.25-\frac{\sqrt{7}+5}{8}
Substitute \frac{\sqrt{7}+5}{8} for x in the equation \sqrt{0.5^{2}-\left(x-0.5\right)^{2}}+0.5=1.25-x.
\frac{1}{8}\times 7^{\frac{1}{2}}+\frac{3}{8}=\frac{5}{8}-\frac{1}{8}\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{7}+5}{8} does not satisfy the equation.
x=\frac{5-\sqrt{7}}{8}
Equation \sqrt{x-x^{2}}=0.75-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}