Solve for x
x=\sqrt{5}+1\approx 3.236067977
x=1-\sqrt{5}\approx -1.236067977
Graph
Share
Copied to clipboard
\left(\sqrt{\left(x+1\right)^{2}+2x^{2}}\right)^{2}=\left(\sqrt{\left(-3-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+2x+1+2x^{2}}\right)^{2}=\left(\sqrt{\left(-3-x\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(\sqrt{3x^{2}+2x+1}\right)^{2}=\left(\sqrt{\left(-3-x\right)^{2}}\right)^{2}
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}+2x+1=\left(\sqrt{\left(-3-x\right)^{2}}\right)^{2}
Calculate \sqrt{3x^{2}+2x+1} to the power of 2 and get 3x^{2}+2x+1.
3x^{2}+2x+1=\left(\sqrt{9+6x+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
3x^{2}+2x+1=9+6x+x^{2}
Calculate \sqrt{9+6x+x^{2}} to the power of 2 and get 9+6x+x^{2}.
3x^{2}+2x+1-9=6x+x^{2}
Subtract 9 from both sides.
3x^{2}+2x-8=6x+x^{2}
Subtract 9 from 1 to get -8.
3x^{2}+2x-8-6x=x^{2}
Subtract 6x from both sides.
3x^{2}-4x-8=x^{2}
Combine 2x and -6x to get -4x.
3x^{2}-4x-8-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}-4x-8=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-8\right)}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16+64}}{2\times 2}
Multiply -8 times -8.
x=\frac{-\left(-4\right)±\sqrt{80}}{2\times 2}
Add 16 to 64.
x=\frac{-\left(-4\right)±4\sqrt{5}}{2\times 2}
Take the square root of 80.
x=\frac{4±4\sqrt{5}}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{5}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{5}+4}{4}
Now solve the equation x=\frac{4±4\sqrt{5}}{4} when ± is plus. Add 4 to 4\sqrt{5}.
x=\sqrt{5}+1
Divide 4+4\sqrt{5} by 4.
x=\frac{4-4\sqrt{5}}{4}
Now solve the equation x=\frac{4±4\sqrt{5}}{4} when ± is minus. Subtract 4\sqrt{5} from 4.
x=1-\sqrt{5}
Divide 4-4\sqrt{5} by 4.
x=\sqrt{5}+1 x=1-\sqrt{5}
The equation is now solved.
\sqrt{\left(\sqrt{5}+1+1\right)^{2}+2\left(\sqrt{5}+1\right)^{2}}=\sqrt{\left(-3-\left(\sqrt{5}+1\right)\right)^{2}}
Substitute \sqrt{5}+1 for x in the equation \sqrt{\left(x+1\right)^{2}+2x^{2}}=\sqrt{\left(-3-x\right)^{2}}.
4+5^{\frac{1}{2}}=4+5^{\frac{1}{2}}
Simplify. The value x=\sqrt{5}+1 satisfies the equation.
\sqrt{\left(1-\sqrt{5}+1\right)^{2}+2\left(1-\sqrt{5}\right)^{2}}=\sqrt{\left(-3-\left(1-\sqrt{5}\right)\right)^{2}}
Substitute 1-\sqrt{5} for x in the equation \sqrt{\left(x+1\right)^{2}+2x^{2}}=\sqrt{\left(-3-x\right)^{2}}.
4-5^{\frac{1}{2}}=4-5^{\frac{1}{2}}
Simplify. The value x=1-\sqrt{5} satisfies the equation.
x=\sqrt{5}+1 x=1-\sqrt{5}
List all solutions of \sqrt{\left(x+1\right)^{2}+2x^{2}}=\sqrt{\left(-x-3\right)^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}