Evaluate
\frac{\sqrt{42}}{2}\approx 3.240370349
Share
Copied to clipboard
\sqrt{3^{2}\left(\sqrt{2}\right)^{2}-\left(\frac{\sqrt{30}}{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\sqrt{9\left(\sqrt{2}\right)^{2}-\left(\frac{\sqrt{30}}{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\sqrt{9\times 2-\left(\frac{\sqrt{30}}{2}\right)^{2}}
The square of \sqrt{2} is 2.
\sqrt{18-\left(\frac{\sqrt{30}}{2}\right)^{2}}
Multiply 9 and 2 to get 18.
\sqrt{18-\frac{\left(\sqrt{30}\right)^{2}}{2^{2}}}
To raise \frac{\sqrt{30}}{2} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{18-\frac{30}{2^{2}}}
The square of \sqrt{30} is 30.
\sqrt{18-\frac{30}{4}}
Calculate 2 to the power of 2 and get 4.
\sqrt{18-\frac{15}{2}}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{21}{2}}
Subtract \frac{15}{2} from 18 to get \frac{21}{2}.
\frac{\sqrt{21}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{21}{2}} as the division of square roots \frac{\sqrt{21}}{\sqrt{2}}.
\frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{21}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{42}}{2}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}