Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{\left(-4-0\right)^{2}+\left(1-0\right)^{2}+\left(7-z\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{\left(-4\right)^{2}+\left(1-0\right)^{2}+\left(7-z\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Subtract 0 from -4 to get -4.
\left(\sqrt{16+\left(1-0\right)^{2}+\left(7-z\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Calculate -4 to the power of 2 and get 16.
\left(\sqrt{16+1^{2}+\left(7-z\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Subtract 0 from 1 to get 1.
\left(\sqrt{16+1+\left(7-z\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{17+\left(7-z\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Add 16 and 1 to get 17.
\left(\sqrt{17+49-14z+z^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-z\right)^{2}.
\left(\sqrt{66-14z+z^{2}}\right)^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Add 17 and 49 to get 66.
66-14z+z^{2}=\left(\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Calculate \sqrt{66-14z+z^{2}} to the power of 2 and get 66-14z+z^{2}.
66-14z+z^{2}=\left(\sqrt{3^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Subtract 0 from 3 to get 3.
66-14z+z^{2}=\left(\sqrt{9+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}\right)^{2}
Calculate 3 to the power of 2 and get 9.
66-14z+z^{2}=\left(\sqrt{9+5^{2}+\left(-2-z\right)^{2}}\right)^{2}
Subtract 0 from 5 to get 5.
66-14z+z^{2}=\left(\sqrt{9+25+\left(-2-z\right)^{2}}\right)^{2}
Calculate 5 to the power of 2 and get 25.
66-14z+z^{2}=\left(\sqrt{34+\left(-2-z\right)^{2}}\right)^{2}
Add 9 and 25 to get 34.
66-14z+z^{2}=\left(\sqrt{34+4+4z+z^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-z\right)^{2}.
66-14z+z^{2}=\left(\sqrt{38+4z+z^{2}}\right)^{2}
Add 34 and 4 to get 38.
66-14z+z^{2}=38+4z+z^{2}
Calculate \sqrt{38+4z+z^{2}} to the power of 2 and get 38+4z+z^{2}.
66-14z+z^{2}-4z=38+z^{2}
Subtract 4z from both sides.
66-18z+z^{2}=38+z^{2}
Combine -14z and -4z to get -18z.
66-18z+z^{2}-z^{2}=38
Subtract z^{2} from both sides.
66-18z=38
Combine z^{2} and -z^{2} to get 0.
-18z=38-66
Subtract 66 from both sides.
-18z=-28
Subtract 66 from 38 to get -28.
z=\frac{-28}{-18}
Divide both sides by -18.
z=\frac{14}{9}
Reduce the fraction \frac{-28}{-18} to lowest terms by extracting and canceling out -2.
\sqrt{\left(-4-0\right)^{2}+\left(1-0\right)^{2}+\left(7-\frac{14}{9}\right)^{2}}=\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-\frac{14}{9}\right)^{2}}
Substitute \frac{14}{9} for z in the equation \sqrt{\left(-4-0\right)^{2}+\left(1-0\right)^{2}+\left(7-z\right)^{2}}=\sqrt{\left(3-0\right)^{2}+\left(5-0\right)^{2}+\left(-2-z\right)^{2}}.
\frac{1}{9}\times 3778^{\frac{1}{2}}=\frac{1}{9}\times 3778^{\frac{1}{2}}
Simplify. The value z=\frac{14}{9} satisfies the equation.
z=\frac{14}{9}
Equation \sqrt{\left(7-z\right)^{2}+17}=\sqrt{\left(-z-2\right)^{2}+34} has a unique solution.