Solve for y
y=2
Graph
Share
Copied to clipboard
\left(\sqrt{\left(-3+y\right)^{2}+\left(6-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{9-6y+y^{2}+\left(6-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+y\right)^{2}.
\left(\sqrt{9-6y+y^{2}+36-12y+y^{2}}\right)^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-y\right)^{2}.
\left(\sqrt{45-6y+y^{2}-12y+y^{2}}\right)^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Add 9 and 36 to get 45.
\left(\sqrt{45-18y+y^{2}+y^{2}}\right)^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Combine -6y and -12y to get -18y.
\left(\sqrt{45-18y+2y^{2}}\right)^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Combine y^{2} and y^{2} to get 2y^{2}.
45-18y+2y^{2}=\left(\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}\right)^{2}
Calculate \sqrt{45-18y+2y^{2}} to the power of 2 and get 45-18y+2y^{2}.
45-18y+2y^{2}=\left(\sqrt{4+4y+y^{2}+\left(1-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+y\right)^{2}.
45-18y+2y^{2}=\left(\sqrt{4+4y+y^{2}+1-2y+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-y\right)^{2}.
45-18y+2y^{2}=\left(\sqrt{5+4y+y^{2}-2y+y^{2}}\right)^{2}
Add 4 and 1 to get 5.
45-18y+2y^{2}=\left(\sqrt{5+2y+y^{2}+y^{2}}\right)^{2}
Combine 4y and -2y to get 2y.
45-18y+2y^{2}=\left(\sqrt{5+2y+2y^{2}}\right)^{2}
Combine y^{2} and y^{2} to get 2y^{2}.
45-18y+2y^{2}=5+2y+2y^{2}
Calculate \sqrt{5+2y+2y^{2}} to the power of 2 and get 5+2y+2y^{2}.
45-18y+2y^{2}-2y=5+2y^{2}
Subtract 2y from both sides.
45-20y+2y^{2}=5+2y^{2}
Combine -18y and -2y to get -20y.
45-20y+2y^{2}-2y^{2}=5
Subtract 2y^{2} from both sides.
45-20y=5
Combine 2y^{2} and -2y^{2} to get 0.
-20y=5-45
Subtract 45 from both sides.
-20y=-40
Subtract 45 from 5 to get -40.
y=\frac{-40}{-20}
Divide both sides by -20.
y=2
Divide -40 by -20 to get 2.
\sqrt{\left(-3+2\right)^{2}+\left(6-2\right)^{2}}=\sqrt{\left(2+2\right)^{2}+\left(1-2\right)^{2}}
Substitute 2 for y in the equation \sqrt{\left(-3+y\right)^{2}+\left(6-y\right)^{2}}=\sqrt{\left(2+y\right)^{2}+\left(1-y\right)^{2}}.
17^{\frac{1}{2}}=17^{\frac{1}{2}}
Simplify. The value y=2 satisfies the equation.
y=2
Equation \sqrt{\left(y-3\right)^{2}+\left(6-y\right)^{2}}=\sqrt{\left(y+2\right)^{2}+\left(1-y\right)^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}