Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2+\left(\frac{1}{2}\right)^{2}}=x^{2}
The square of \sqrt{2} is 2.
\sqrt{2+\frac{1}{4}}=x^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\sqrt{\frac{9}{4}}=x^{2}
Add 2 and \frac{1}{4} to get \frac{9}{4}.
\frac{3}{2}=x^{2}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
x^{2}=\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\sqrt{6}}{2} x=-\frac{\sqrt{6}}{2}
Take the square root of both sides of the equation.
\sqrt{2+\left(\frac{1}{2}\right)^{2}}=x^{2}
The square of \sqrt{2} is 2.
\sqrt{2+\frac{1}{4}}=x^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\sqrt{\frac{9}{4}}=x^{2}
Add 2 and \frac{1}{4} to get \frac{9}{4}.
\frac{3}{2}=x^{2}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
x^{2}=\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{3}{2}=0
Subtract \frac{3}{2} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{3}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{3}{2}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{6}}{2}
Multiply -4 times -\frac{3}{2}.
x=\frac{\sqrt{6}}{2}
Now solve the equation x=\frac{0±\sqrt{6}}{2} when ± is plus.
x=-\frac{\sqrt{6}}{2}
Now solve the equation x=\frac{0±\sqrt{6}}{2} when ± is minus.
x=\frac{\sqrt{6}}{2} x=-\frac{\sqrt{6}}{2}
The equation is now solved.