Evaluate
\frac{17\sqrt{6}}{6}\approx 6.940220938
Share
Copied to clipboard
\sqrt{\frac{289}{36}+\left(\frac{17}{3}\right)^{2}+\left(\frac{17}{6}\right)^{2}}
Calculate \frac{17}{6} to the power of 2 and get \frac{289}{36}.
\sqrt{\frac{289}{36}+\frac{289}{9}+\left(\frac{17}{6}\right)^{2}}
Calculate \frac{17}{3} to the power of 2 and get \frac{289}{9}.
\sqrt{\frac{289}{36}+\frac{1156}{36}+\left(\frac{17}{6}\right)^{2}}
Least common multiple of 36 and 9 is 36. Convert \frac{289}{36} and \frac{289}{9} to fractions with denominator 36.
\sqrt{\frac{289+1156}{36}+\left(\frac{17}{6}\right)^{2}}
Since \frac{289}{36} and \frac{1156}{36} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1445}{36}+\left(\frac{17}{6}\right)^{2}}
Add 289 and 1156 to get 1445.
\sqrt{\frac{1445}{36}+\frac{289}{36}}
Calculate \frac{17}{6} to the power of 2 and get \frac{289}{36}.
\sqrt{\frac{1445+289}{36}}
Since \frac{1445}{36} and \frac{289}{36} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1734}{36}}
Add 1445 and 289 to get 1734.
\sqrt{\frac{289}{6}}
Reduce the fraction \frac{1734}{36} to lowest terms by extracting and canceling out 6.
\frac{\sqrt{289}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{289}{6}} as the division of square roots \frac{\sqrt{289}}{\sqrt{6}}.
\frac{17}{\sqrt{6}}
Calculate the square root of 289 and get 17.
\frac{17\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{17}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{17\sqrt{6}}{6}
The square of \sqrt{6} is 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}