Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\left(16\sqrt{13}\right)^{2}}{13^{2}}+\left(\frac{2\sqrt{13}}{13}\right)^{2}}
To raise \frac{16\sqrt{13}}{13} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(16\sqrt{13}\right)^{2}}{13^{2}}+\frac{\left(2\sqrt{13}\right)^{2}}{13^{2}}}
To raise \frac{2\sqrt{13}}{13} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(16\sqrt{13}\right)^{2}+\left(2\sqrt{13}\right)^{2}}{13^{2}}}
Since \frac{\left(16\sqrt{13}\right)^{2}}{13^{2}} and \frac{\left(2\sqrt{13}\right)^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\sqrt{\frac{16^{2}\left(\sqrt{13}\right)^{2}+\left(2\sqrt{13}\right)^{2}}{13^{2}}}
Expand \left(16\sqrt{13}\right)^{2}.
\sqrt{\frac{256\left(\sqrt{13}\right)^{2}+\left(2\sqrt{13}\right)^{2}}{13^{2}}}
Calculate 16 to the power of 2 and get 256.
\sqrt{\frac{256\times 13+\left(2\sqrt{13}\right)^{2}}{13^{2}}}
The square of \sqrt{13} is 13.
\sqrt{\frac{3328+\left(2\sqrt{13}\right)^{2}}{13^{2}}}
Multiply 256 and 13 to get 3328.
\sqrt{\frac{3328+2^{2}\left(\sqrt{13}\right)^{2}}{13^{2}}}
Expand \left(2\sqrt{13}\right)^{2}.
\sqrt{\frac{3328+4\left(\sqrt{13}\right)^{2}}{13^{2}}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{3328+4\times 13}{13^{2}}}
The square of \sqrt{13} is 13.
\sqrt{\frac{3328+52}{13^{2}}}
Multiply 4 and 13 to get 52.
\sqrt{\frac{3380}{13^{2}}}
Add 3328 and 52 to get 3380.
\sqrt{\frac{3380}{169}}
Calculate 13 to the power of 2 and get 169.
\sqrt{20}
Divide 3380 by 169 to get 20.
2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.