Evaluate
\frac{4\sqrt{2}}{15}\approx 0.377123617
Share
Copied to clipboard
\sqrt{\left(-\frac{4}{15}\right)^{2}-1\times \left(\frac{1}{5}\right)^{2}+\left(\frac{1}{3}\right)^{2}}
Fraction \frac{-4}{15} can be rewritten as -\frac{4}{15} by extracting the negative sign.
\sqrt{\frac{16}{225}-1\times \left(\frac{1}{5}\right)^{2}+\left(\frac{1}{3}\right)^{2}}
Calculate -\frac{4}{15} to the power of 2 and get \frac{16}{225}.
\sqrt{\frac{16}{225}-1\times \frac{1}{25}+\left(\frac{1}{3}\right)^{2}}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
\sqrt{\frac{16}{225}-\frac{1}{25}+\left(\frac{1}{3}\right)^{2}}
Multiply 1 and \frac{1}{25} to get \frac{1}{25}.
\sqrt{\frac{7}{225}+\left(\frac{1}{3}\right)^{2}}
Subtract \frac{1}{25} from \frac{16}{225} to get \frac{7}{225}.
\sqrt{\frac{7}{225}+\frac{1}{9}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\sqrt{\frac{32}{225}}
Add \frac{7}{225} and \frac{1}{9} to get \frac{32}{225}.
\frac{\sqrt{32}}{\sqrt{225}}
Rewrite the square root of the division \sqrt{\frac{32}{225}} as the division of square roots \frac{\sqrt{32}}{\sqrt{225}}.
\frac{4\sqrt{2}}{\sqrt{225}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{4\sqrt{2}}{15}
Calculate the square root of 225 and get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}