Evaluate
\frac{738\sqrt{3}+4665}{169}\approx 35.16718045
Factor
\frac{3 {(246 \sqrt{3} + 1555)}}{169} = 35.167180449620304
Share
Copied to clipboard
\left(\sqrt{\left(\frac{-12\sqrt{3}-9}{13}-2\sqrt{3}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}
Multiply \sqrt{\left(\frac{-12\sqrt{3}-9}{13}-2\sqrt{3}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}} and \sqrt{\left(\frac{-12\sqrt{3}-9}{13}-2\sqrt{3}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}} to get \left(\sqrt{\left(\frac{-12\sqrt{3}-9}{13}-2\sqrt{3}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}.
\left(\sqrt{\left(\frac{-12\sqrt{3}-9}{13}+\frac{13\left(-2\right)\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{13}{13}.
\left(\sqrt{\left(\frac{-12\sqrt{3}-9+13\left(-2\right)\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}
Since \frac{-12\sqrt{3}-9}{13} and \frac{13\left(-2\right)\sqrt{3}}{13} have the same denominator, add them by adding their numerators.
\left(\sqrt{\left(\frac{-12\sqrt{3}-9-26\sqrt{3}}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}
Do the multiplications in -12\sqrt{3}-9+13\left(-2\right)\sqrt{3}.
\left(\sqrt{\left(\frac{-38\sqrt{3}-9}{13}\right)^{2}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}
Do the calculations in -12\sqrt{3}-9-26\sqrt{3}.
\left(\sqrt{\frac{\left(-38\sqrt{3}-9\right)^{2}}{13^{2}}+\left(\frac{3+9\sqrt{3}}{13}\right)^{2}}\right)^{2}
To raise \frac{-38\sqrt{3}-9}{13} to a power, raise both numerator and denominator to the power and then divide.
\left(\sqrt{\frac{\left(-38\sqrt{3}-9\right)^{2}}{13^{2}}+\frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}}}\right)^{2}
To raise \frac{3+9\sqrt{3}}{13} to a power, raise both numerator and denominator to the power and then divide.
\left(\sqrt{\frac{\left(-38\sqrt{3}-9\right)^{2}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}}\right)^{2}
Since \frac{\left(-38\sqrt{3}-9\right)^{2}}{13^{2}} and \frac{\left(3+9\sqrt{3}\right)^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-38\sqrt{3}-9\right)^{2}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Calculate \sqrt{\frac{\left(-38\sqrt{3}-9\right)^{2}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}} to the power of 2 and get \frac{\left(-38\sqrt{3}-9\right)^{2}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}.
\frac{1444\left(\sqrt{3}\right)^{2}+684\sqrt{3}+81+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-38\sqrt{3}-9\right)^{2}.
\frac{1444\times 3+684\sqrt{3}+81+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
The square of \sqrt{3} is 3.
\frac{4332+684\sqrt{3}+81+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Multiply 1444 and 3 to get 4332.
\frac{4413+684\sqrt{3}+\left(3+9\sqrt{3}\right)^{2}}{13^{2}}
Add 4332 and 81 to get 4413.
\frac{4413+684\sqrt{3}+9+54\sqrt{3}+81\left(\sqrt{3}\right)^{2}}{13^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+9\sqrt{3}\right)^{2}.
\frac{4413+684\sqrt{3}+9+54\sqrt{3}+81\times 3}{13^{2}}
The square of \sqrt{3} is 3.
\frac{4413+684\sqrt{3}+9+54\sqrt{3}+243}{13^{2}}
Multiply 81 and 3 to get 243.
\frac{4413+684\sqrt{3}+252+54\sqrt{3}}{13^{2}}
Add 9 and 243 to get 252.
\frac{4665+684\sqrt{3}+54\sqrt{3}}{13^{2}}
Add 4413 and 252 to get 4665.
\frac{4665+738\sqrt{3}}{13^{2}}
Combine 684\sqrt{3} and 54\sqrt{3} to get 738\sqrt{3}.
\frac{4665+738\sqrt{3}}{169}
Calculate 13 to the power of 2 and get 169.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}